Zephyrnet Logo

Strategies for non-viral vectors targeting organs beyond the liver – Nature Nanotechnology

Date:

  • Zhang, Y.-N., Poon, W., Tavares, A. J., McGilvray, I. D. & Chan, W. C. W. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release 240, 332–348 (2016).

    CAS 

    Google Scholar
     

  • Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rotolo, L. et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 22, 369–379 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, R. et al. Hydrogels for RNA delivery. Nat. Mater. 22, 818–831 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Van Haasteren, J. et al. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 38, 845–855 (2020).

    Article 

    Google Scholar
     

  • Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 15, 819–829 (2020). This Review thoroughly discusses the characteristics of NPs required for effective delivery within a biological context.

    Article 
    CAS 

    Google Scholar
     

  • Patel, S. et al. Brief update on endocytosis of nanomedicines. Adv. Drug Deliv. Rev. 144, 90–111 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Alameh, M.-G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Klibanov, A. L., Maruyama, K., Torchilin, V. P. & Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Witzigmann, D. et al. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv. Drug Deliv. Rev. 159, 344–363 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010). This study discovered that the ApoE–LDLR pathway facilitates hepatocyte transfection when LNPs contain ionizable cationic lipids but not when permanently cationic lipids are used.

    Article 
    CAS 

    Google Scholar
     

  • Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kasiewicz, L. N. et al. GalNAc–lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat. Commun. 14, 2776 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ozelo, M. C. et al. Valoctocogene roxaparvovec gene therapy for hemophilia A. N. Engl. J. Med. 386, 1013–1025 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 26, 431–442 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Lawitz, E. J. et al. BMS‐986263 in patients with advanced hepatic fibrosis: 36‐week results from a randomized, placebo‐controlled phase 2 trial. Hepatology 75, 912–923 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Han, X. et al. Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat. Commun. 14, 75 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mrna to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, 1807748 (2019).

    Article 

    Google Scholar
     

  • Eygeris, Y., Gupta, M., Kim, J. & Sahay, G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 55, 2–12 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Viger-Gravel, J. et al. Structure of lipid nanoparticles containing sirna or mrna by dynamic nuclear polarization-enhanced NMR spectroscopy. J. Phys. Chem. B 122, 2073–2081 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Goula, D. et al. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther. 5, 1291–1295 (1998).

    CAS 

    Google Scholar
     

  • Green, J. J., Langer, R. & Anderson, D. G. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 41, 749–759 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Joubert, F. et al. Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to improve cytosolic delivery of mRNA. J. Control. Release 356, 580–594 (2023).

    CAS 

    Google Scholar
     

  • Yang, W., Mixich, L., Boonstra, E. & Cabral, H. Polymer-based mRNA delivery strategies for advanced therapies. Adv. Healthc. Mater. 12, 2202688 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cabral, H., Miyata, K., Osada, K. & Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 118, 6844–6892 (2018).

    Article 
    CAS 

    Google Scholar
     

  • He, D. & Wagner, E. Defined polymeric materials for gene delivery. Macromol. Biosci. 15, 600–612 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Reinhard, S. & Wagner, E. How to tackle the challenge of siRNA delivery with sequence-defined oligoamino amides. Macromol. Biosci. 17, 1600152 (2017).

    Article 

    Google Scholar
     

  • DeSimone, J. M. Co-opting Moore’s law: therapeutics, vaccines and interfacially active particles manufactured via PRINT®. J. Control. Release 240, 541–543 (2016).

    CAS 

    Google Scholar
     

  • Patel, A. K. et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31, 1805116 (2019). This study explored the application of polymeric NPs for inhaled mRNA delivery, highlighting the potential advantage of polymers for nebulization through their self-assembly.

    Article 

    Google Scholar
     

  • Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10, e1001450 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wahlgren, J. et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 40, e130–e130 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ståhl, A. et al. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles. PLoS Pathog. 11, e1004619 (2015).

    Article 

    Google Scholar
     

  • Melamed, J. R. et al. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. Sci. Adv. 9, eade1444 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. ARMMs as a versatile platform for intracellular delivery of macromolecules. Nat. Commun. 9, 960 (2018).

    Article 

    Google Scholar
     

  • Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882–889 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Elsharkasy, O. M. et al. Extracellular vesicles as drug delivery systems: why and how? Adv. Drug Deliv. Rev. 159, 332–343 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Klein, D. et al. Centyrin ligands for extrahepatic delivery of siRNA. Mol. Ther. 29, 2053–2066 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol. 40, 1500–1508 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wels, M., Roels, D., Raemdonck, K., De Smedt, S. C. & Sauvage, F. Challenges and strategies for the delivery of biologics to the cornea. J. Control. Release 333, 560–578 (2021).

    CAS 

    Google Scholar
     

  • Baran-Rachwalska, P. et al. Topical siRNA delivery to the cornea and anterior eye by hybrid silicon-lipid nanoparticles. J. Control. Release 326, 192–202 (2020).

    CAS 

    Google Scholar
     

  • Bogaert, B. et al. A lipid nanoparticle platform for mRNA delivery through repurposing of cationic amphiphilic drugs. J. Control. Release 350, 256–270 (2022).

    CAS 

    Google Scholar
     

  • Kim, H. M. & Woo, S. J. Ocular drug delivery to the retina: current innovations and future perspectives. Pharmaceutics 13, 108 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yiu, G. et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates. Mol. Ther. Methods Clin. Dev. 16, 179–191 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Weng, C. Y. Bilateral subretinal voretigene neparvovec-rzyl (Luxturna) gene therapy. Ophthalmol. Retin. 3, 450 (2019).

    Article 

    Google Scholar
     

  • Jaskolka, M. C. et al. Exploratory safety profile of EDIT-101, a first-in-human in vivo CRISPR gene editing therapy for CEP290-related retinal degeneration. Invest. Ophthalmol. Vis. Sci. 63, 2836–A0352 (2022).


    Google Scholar
     

  • Chirco, K. R., Martinez, C. & Lamba, D. A. Advancements in pre-clinical development of gene editing-based therapies to treat inherited retinal diseases. Vis. Res. 209, 108257 (2023).

    Article 

    Google Scholar
     

  • Leroy, B. P. et al. Efficacy and safety of sepofarsen, an intravitreal RNA antisense oligonucleotide, for the treatment of CEP290-associated Leber congenital amaurosis (LCA10): a randomized, double-masked, sham-controlled, phase 3 study (ILLUMINATE). Invest. Ophthalmol. Vis. Sci. 63, 4536-F0323 (2022).


    Google Scholar
     

  • Ammar, M. J., Hsu, J., Chiang, A., Ho, A. C. & Regillo, C. D. Age-related macular degeneration therapy: a review. Curr. Opin. Ophthalmol. 31, 215–221 (2020).

    Article 

    Google Scholar
     

  • Goldberg, R. et al. Efficacy of intravitreal pegcetacoplan in patients with geographic atrophy (GA): 12-month results from the phase 3 OAKS and DERBY studies. Invest. Ophthalmol. Vis. Sci. 63, 1500–1500 (2022).


    Google Scholar
     

  • Shen, J. et al. Suprachoroidal gene transfer with nonviral nanoparticles. Sci. Adv. 6, eaba1606 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tan, G. et al. A core-shell nanoplatform as a nonviral vector for targeted delivery of genes to the retina. Acta Biomater. 134, 605–620 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jin, J. et al. Anti-inflammatory and antiangiogenic effects of nanoparticle-mediated delivery of a natural angiogenic inhibitor. Investig. Opthalmol. Vis. Sci. 52, 6230 (2011).

    CAS 

    Google Scholar
     

  • Keenan, T. D. L., Cukras, C. A. & Chew, E. Y. Age-related macular degeneration: epidemiology and clinical aspects. Adv. Exp. Med. Biol. 1256, 1–31 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat. Nanotechnol. 14, 974–980 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mirjalili Mohanna, S. Z. et al. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea. J. Control. Release 350, 401–413 (2022).

    CAS 

    Google Scholar
     

  • Patel, S., Ryals, R. C., Weller, K. K., Pennesi, M. E. & Sahay, G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J. Control. Release 303, 91–100 (2019).

    CAS 

    Google Scholar
     

  • Sun, D. et al. Non-viral gene therapy for stargardt disease with ECO/pRHO-ABCA4 self-assembled nanoparticles. Mol. Ther. 28, 293–303 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Herrera-Barrera, M. et al. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci. Adv. 9, eadd4623 (2023).

    Article 

    Google Scholar
     

  • Huertas, A. et al. Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases: highlights from basic research to therapy. Eur. Respir. J. 51, 1700745 (2018).

    Article 

    Google Scholar
     

  • Hong, K.-H. et al. Genetic ablation of the Bmpr2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118, 722–730 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020). This groundbreaking study found that incorporating differently charged (SORT) lipids into the conventional four-component LNPs shifts the location of mRNA transfection among the liver, spleen and lungs.

    Article 
    CAS 

    Google Scholar
     

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021). This work thoroughly investigated the impact of SORT lipids added to LNPs on the formation of the biomolecular corona on the NP surface and its role in achieving organ-specific transfection.

    Article 
    CAS 

    Google Scholar
     

  • Kimura, S. & Harashima, H. On the mechanism of tissue-selective gene delivery by lipid nanoparticles. J. Control. Release https://doi.org/10.1016/j.jconrel.2023.03.052 (2023).

  • Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kaczmarek, J. C. et al. Polymer–lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew. Chem. Int. Ed. 55, 13808–13812 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shen, A. M. & Minko, T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J. Control. Release 326, 222–244 (2020).

    CAS 

    Google Scholar
     

  • Alton, E. W. F. W. et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 3, 684–691 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano 16, 14792–14806 (2022).

    CAS 

    Google Scholar
     

  • Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, Y. et al. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J. Control. Release 314, 102–115 (2019).

    CAS 

    Google Scholar
     

  • Popowski, K. D. et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 5, 2960–2974 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Telko, M. J. & Hickey, A. J. Dry powder inhaler formulation. Respir. Care 50, 1209 (2005).


    Google Scholar
     

  • Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01679-x (2023).

  • Fahy, J. V. & Dickey, B. F. Airway mucus function and dysfunction. N. Engl. J. Med. 363, 2233–2247 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Schneider, C. S. et al. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv. 3, e1601556 (2017).

    Article 

    Google Scholar
     

  • Wang, J. et al. Pulmonary surfactant–biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science 367, eaau0810 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rock, J. R., Randell, S. H. & Hogan, B. L. M. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis. Model. Mech. 3, 545–556 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Getts, D. R. et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat. Biotechnol. 30, 1217–1224 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bevers, S. et al. mRNA–LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol. Ther. 30, 3078–3094 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article 

    Google Scholar
     

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fenton, O. S. et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv. Mater. 29, 1606944 (2017).

    Article 

    Google Scholar
     

  • Zhao, X. et al. Imidazole‐based synthetic lipidoids for in vivo mRNA delivery into primary T lymphocytes. Angew. Chem. Int. Ed. 59, 20083–20089 (2020).

    Article 
    CAS 

    Google Scholar
     

  • LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, K. A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022).

    CAS 

    Google Scholar
     

  • McKinlay, C. J., Benner, N. L., Haabeth, O. A., Waymouth, R. M. & Wender, P. A. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc. Natl Acad. Sci. USA 115, E5859–E5866 (2018).

    Article 

    Google Scholar
     

  • McKinlay, C. J. et al. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl Acad. Sci. USA 114, E448–E456 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ben-Akiva, E. et al. Biodegradable lipophilic polymeric mRNA nanoparticles for ligand-free targeting of splenic dendritic cells for cancer vaccination. Proc. Natl Acad. Sci. USA 120, e2301606120 (2023).

    Article 

    Google Scholar
     

  • Tombácz, I. et al. Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA–LNPs. Mol. Ther. 29, 3293–3304 (2021).

    Article 

    Google Scholar
     

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J., Eygeris, Y., Gupta, M. & Sahay, G. Self-assembled mRNA vaccines. Adv. Drug Deliv. Rev. 170, 83–112 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lindsay, K. E. et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET–CT and near-infrared imaging. Nat. Biomed. Eng. 3, 371–380 (2019). This pioneering study delved into the biodistribution of lipid-based mRNA vaccines after their intramuscular injection into non-human primates using a dual radionuclide–near-infrared probe.

    Article 
    CAS 

    Google Scholar
     

  • Alberer, M. et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390, 1511–1520 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Assessment Report: Comirnaty EMA/707383/2020 (European Medicines Agency, 2021); https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf

  • Assessment Report: COVID-19 Vaccine Moderna EMA/15689/2021 (European Medicines Agency, 2021); https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf

  • Ke, X. et al. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv. Drug Deliv. Rev. 151–152, 72–93 (2019).

    Article 

    Google Scholar
     

  • Hansen, K. C., D’Alessandro, A., Clement, C. C. & Santambrogio, L. Lymph formation, composition and circulation: a proteomics perspective. Int. Immunol. 27, 219–227 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc. Natl Acad. Sci. USA 119, e2207841119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. et al. Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes. J. Am. Chem. Soc. 143, 21321–21330 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kreiter, S. et al. Intranodal vaccination with naked antigen-encoding rna elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 70, 9031–9040 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Fan, C.-H. et al. Folate-conjugated gene-carrying microbubbles with focused ultrasound for concurrent blood–brain barrier opening and local gene delivery. Biomaterials 106, 46–57 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Y. J. et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl. Med. 3, 84ra44 (2011).

    Article 

    Google Scholar
     

  • Yu, Y. J. et al. Therapeutic bispecific antibodies cross the blood–brain barrier in nonhuman primates. Sci. Transl. Med. 6, 261ra154 (2014).

    Article 

    Google Scholar
     

  • Kariolis, M. S. et al. Brain delivery of therapeutic proteins using an Fc fragment blood–brain barrier transport vehicle in mice and monkeys. Sci. Transl. Med. 12, eaay1359 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ullman, J. C. et al. Brain delivery and activity of a lysosomal enzyme using a blood–brain barrier transport vehicle in mice. Sci. Transl. Med. 12, eaay1163 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, F. et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci. Adv. 6, eabb4429 (2020). This study suggests that designing lipids to mimic neurotransmitters and incorporating them into NPs can enhance the delivery of nucleic acids and proteins to the brain following IV injection.

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Blood–brain barrier-penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv. 6, eabc7031 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. BBB pathophysiology-independent delivery of siRNA in traumatic brain injury. Sci. Adv. 7, eabd6889 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nance, E. A. et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 4, 149ra119 (2012).

    Article 

    Google Scholar
     

  • Thorne, R. G. & Nicholson, C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl Acad. Sci. USA 103, 5567–5572 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kim, M. et al. Delivery of self-replicating messenger RNA into the brain for the treatment of ischemic stroke. J. Control. Release 350, 471–485 (2022).

    CAS 

    Google Scholar
     

  • Willerth, S. M. & Sakiyama-Elbert, S. E. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv. Drug Deliv. Rev. 59, 325–338 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Saucier-Sawyer, J. K. et al. Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J. Control. Release 232, 103–112 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Dhaliwal, H. K., Fan, Y., Kim, J. & Amiji, M. M. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol. Pharm. 17, 1996–2005 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hirabayashi, H. & Fujisaki, J. Bone-specific drug delivery systems: approaches via chemical modification of bone-seeking agents. Clin. Pharmacokinet. 42, 1319–1330 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Wang, G., Mostafa, N. Z., Incani, V., Kucharski, C. & Uludağ, H. Bisphosphonate-decorated lipid nanoparticles designed as drug carriers for bone diseases. J. Biomed. Mater. Res. A 100, 684–693 (2012).

    Article 

    Google Scholar
     

  • Giger, E. V. et al. Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. J. Control. Release 150, 87–93 (2011).

    CAS 

    Google Scholar
     

  • Xue, L. et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J. Am. Chem. Soc. 144, 9926–9937 (2022). This study proposes that improving lipid design to mimic bisphosphates can improve LNP-mediated mRNA delivery to the bone microenvironment after IV injection.

    Article 
    CAS 

    Google Scholar
     

  • Liang, C. et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat. Med. 21, 288–294 (2015).

    Article 

    Google Scholar
     

  • Zhang, Y., Wei, L., Miron, R. J., Shi, B. & Bian, Z. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression. J. Bone Miner. Res. 30, 286–296 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, G. et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat. Med. 18, 307–314 (2012).

    Article 

    Google Scholar
     

  • Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles. Nano Lett. 23, 2938–2944 (2023).

    CAS 

    Google Scholar
     

  • Sago, C. D. et al. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J. Am. Chem. Soc. 140, 17095–17105 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X., Li, Y., Chen, Y. E., Chen, J. & Ma, P. X. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat. Commun. 7, 10376 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, P. et al. In vivo bone tissue induction by freeze-dried collagen–nanohydroxyapatite matrix loaded with BMP2/NS1 mRNAs lipopolyplexes. J. Control. Release 334, 188–200 (2021).

    CAS 

    Google Scholar
     

  • Athirasala, A. et al. Matrix stiffness regulates lipid nanoparticle-mRNA delivery in cell-laden hydrogels. Nanomed. Nanotechnol. Biol. Med. 42, 102550 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nims, R. J., Pferdehirt, L. & Guilak, F. Mechanogenetics: harnessing mechanobiology for cellular engineering. Curr. Opin. Biotechnol. 73, 374–379 (2022).

    Article 
    CAS 

    Google Scholar
     

  • O’Driscoll, C. M., Bernkop-Schnürch, A., Friedl, J. D., Préat, V. & Jannin, V. Oral delivery of non-viral nucleic acid-based therapeutics—do we have the guts for this? Eur. J. Pharm. Sci. 133, 190–204 (2019).

    Article 

    Google Scholar
     

  • Ball, R. L., Bajaj, P. & Whitehead, K. A. Oral delivery of siRNA lipid nanoparticles: fate in the GI tract. Sci. Rep. 8, 2178 (2018).

    Article 

    Google Scholar
     

  • Attarwala, H., Han, M., Kim, J. & Amiji, M. Oral nucleic acid therapy using multi-compartmental delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10, e1478 (2018).

    Article 

    Google Scholar
     

  • Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Abramson, A. et al. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter 5, 975–987 (2022). This study shows the potential for delivery of mRNA-loaded PBAE NPs directly to the submucosa of the stomach using orally ingested robotic pills.

    Article 
    CAS 

    Google Scholar
     

  • Doll, S. et al. Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 8, 1469 (2017).

    Article 

    Google Scholar
     

  • Xin, M., Olson, E. N. & Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 14, 529–541 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tang, R., Long, T., Lui, K. O., Chen, Y. & Huang, Z.-P. A roadmap for fixing the heart: RNA regulatory networks in cardiac disease. Mol. Ther. Nucleic Acids 20, 673–686 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Han, P. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102–106 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Anttila, V. et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol. Ther. 31, 866–874 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Täubel, J. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 42, 178–188 (2021).

    Article 

    Google Scholar
     

  • Nishiyama, T. et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci. Transl. Med. 14, eade1633 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Reichart, D. et al. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat. Med. 29, 412–421 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chai, A. C. et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat. Med. 29, 401–411 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Rubin, J. D. & Barry, M. A. Improving molecular therapy in the kidney. Mol. Diagn. Ther. 24, 375–396 (2020).

    Article 

    Google Scholar
     

  • Oroojalian, F. et al. Recent advances in nanotechnology-based drug delivery systems for the kidney. J. Control. Release 321, 442–462 (2020).

    CAS 

    Google Scholar
     

  • Jiang, D. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2, 865–877 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. NIR-II photoacoustic-active DNA origami nanoantenna for early diagnosis and smart therapy of acute kidney injury. J. Am. Chem. Soc. 144, 23522–23533 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Stribley, J. M., Rehman, K. S., Niu, H. & Christman, G. M. Gene therapy and reproductive medicine. Fertil. Steril. 77, 645–657 (2002).

    Article 

    Google Scholar
     

  • Boekelheide, K. & Sigman, M. Is gene therapy for the treatment of male infertility feasible? Nat. Clin. Pract. Urol. 5, 590–593 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Rodríguez-Gascón, A., del Pozo-Rodríguez, A., Isla, A. & Solinís, M. A. Vaginal gene therapy. Adv. Drug Deliv. Rev. 92, 71–83 (2015).

    Article 

    Google Scholar
     

  • Lindsay, K. E. et al. Aerosol delivery of synthetic mRNA to vaginal mucosa leads to durable expression of broadly neutralizing antibodies against HIV. Mol. Ther. 28, 805–819 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Poley, M. et al. Nanoparticles accumulate in the female reproductive system during ovulation affecting cancer treatment and fertility. ACS Nano 16, 5246–5257 (2022).

    CAS 

    Google Scholar
     

  • DeWeerdt, S. Prenatal gene therapy offers the earliest possible cure. Nature 564, S6–S8 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Palanki, R., Peranteau, W. H. & Mitchell, M. J. Delivery technologies for in utero gene therapy. Adv. Drug Deliv. Rev. 169, 51–62 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Riley, R. S. et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv. 7, 1028–1041 (2021).

    Article 

    Google Scholar
     

  • Swingle, K. L. et al. Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. J. Control. Release 341, 616–633 (2022).

    CAS 

    Google Scholar
     

  • Ricciardi, A. S. et al. In utero nanoparticle delivery for site-specific genome editing. Nat. Commun. 9, 2481 (2018). This study presents in utero gene editing of a disease-causing β-thalassemia mutation in foetal mice.

    Article 

    Google Scholar
     

  • Chaudhary, N. et al. Lipid nanoparticle structure and delivery route during pregnancy dictates mRNA potency, immunogenicity, and health in the mother and offspring. Preprint at bioRxiv https://doi.org/10.1101/2023.02.15.528720 (2023).

  • Young, R. E. et al. Lipid nanoparticle composition drives mRNA delivery to the placenta. Preprint at bioRxiv https://doi.org/10.1101/2022.12.22.521490 (2022).

  • Swingle, K. L. et al. Ionizable lipid nanoparticles for in vivo mRNA delivery to the placenta during pregnancy. J. Am. Chem. Soc. 145, 4691–4706 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lan, Y. et al. Recent development of AAV-based gene therapies for inner ear disorders. Gene Ther. 27, 329–337 (2020).

    CAS 

    Google Scholar
     

  • Delmaghani, S. & El-Amraoui, A. Inner ear gene therapies take off: current promises and future challenges. J. Clin. Med. 9, 2309 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Kempton, J. B. & Brigande, J. V. Gene therapy in mouse models of deafness and balance dysfunction. Front. Mol. Neurosci. 11, 300 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Du, X. et al. Regeneration of cochlear hair cells and hearing recovery through Hes1 modulation with siRNA nanoparticles in adult guinea pigs. Mol. Ther. 26, 1313–1326 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gao, X. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553, 217–221 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jero, J. et al. Cochlear gene delivery through an intact round window membrane in mouse. Hum. Gene Ther. 12, 539–548 (2001).

    CAS 

    Google Scholar
     

  • Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).

    Article 
    CAS 

    Google Scholar
     

  • El-Sawy, H. S., Al-Abd, A. M., Ahmed, T. A., El-Say, K. M. & Torchilin, V. P. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano 12, 10636–10664 (2018).

    CAS 

    Google Scholar
     

  • Hansen, A. E. et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano 9, 6985–6995 (2015).

    CAS 

    Google Scholar
     

  • Zhou, Q. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). This Review deeply explores the possible factors behind the ineffective tumour-targeting of NPs, uncovering that only a small fraction of the administered NP dose reaches a solid tumour.

    Article 
    CAS 

    Google Scholar
     

  • Schroeder, A. et al. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 12, 39–50 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chan, W. C. W. Principles of nanoparticle delivery to solid tumors. BME Front. 4, 0016 (2023). This Review delineates key principles for designing tumour-targeting NPs, considering both macro- and micro-level analysis of the environment surrounding NPs and their physicochemical attributes.

    Article 
    CAS 

    Google Scholar
     

  • Kingston, B. R. et al. Specific endothelial cells govern nanoparticle entry into solid tumors. ACS Nano 15, 14080–14094 (2021).

    CAS 

    Google Scholar
     

  • Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 377, eabm5551 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 1, 882–893 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hotz, C. et al. Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13, eabc7804 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat. Commun. 12, 7264 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Van Lint, S. et al. Intratumoral delivery of TriMix mRNA results in T-cell activation by cross-presenting dendritic cells. Cancer Immunol. Res. 4, 146–156 (2016).

    Article 

    Google Scholar
     

  • Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017).

    CAS 

    Google Scholar
     

  • Huayamares, S. G. et al. High-throughput screens identify a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo. J. Control. Release 357, 394–403 (2023).

    CAS 

    Google Scholar
     

  • Vetter, V. C. & Wagner, E. Targeting nucleic acid-based therapeutics to tumors: challenges and strategies for polyplexes. J. Control. Release 346, 110–135 (2022).

    CAS 

    Google Scholar
     

  • Yong, S. et al. Dual‐targeted lipid nanotherapeutic boost for chemo‐immunotherapy of cancer. Adv. Mater. 34, 2106350 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kedmi, R. et al. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol. 13, 214–219 (2018). This study developed a modular, ligand-based RNA delivery platform that avoids the chemical conjugation of antibodies by using linkers that bind to the Fc region, ensuring precise antibody orientation on the NP surface.

    Article 
    CAS 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Adachi, K., Enoki, T., Kawano, Y., Veraz, M. & Nakai, H. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nat. Commun. 5, 3075 (2014).

    Article 

    Google Scholar
     

  • Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017). This work presents the remarkable capabilities of DNA barcoding and deep sequencing in conducting high-throughput screening of NPs, assessing their effectiveness in target-specific gene delivery in vivo.

    Article 
    CAS 

    Google Scholar
     

  • Da Silva Sanchez, A. J. et al. Universal barcoding predicts in vivo ApoE-independent lipid nanoparticle delivery. Nano Lett. 22, 4822–4830 (2022).


    Google Scholar
     

  • Guimaraes, P. P. G. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J. Control. Release 316, 404–417 (2019).

    CAS 

    Google Scholar
     

  • Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Keenum, M. C. et al. Single-cell epitope-transcriptomics reveal lung stromal and immune cell response kinetics to nanoparticle-delivered RIG-I and TLR4 agonists. Biomaterials 297, 122097 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rao, N., Clark, S. & Habern, O. Bridging genomics and tissue pathology: 10x Genomics explores new frontiers with the Visium Spatial Gene Expression Solution. Genet. Eng. Biotechnol. News 40, 50–51 (2020).

    Article 

    Google Scholar
     

  • Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug. Chem. 31, 2046–2059 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shao, D. et al. HBFP: a new repository for human body fluid proteome. Database 2021, baab065 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, W. et al. Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm. Acta Pharm. Sin. B 12, 2950–2962 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. AGILE platform: a deep learning-powered approach to accelerate LNP development for mRNA delivery. Preprint at bioRxiv https://doi.org/10.1101/2023.06.01.543345 (2023). This work implements artificial intelligence in ionizable lipid design for intramuscular mRNA delivery.

  • Gong, D. et al. Machine learning guided structure function predictions enable in silico nanoparticle screening for polymeric gene delivery. Acta Biomater. 154, 349–358 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yamankurt, G. et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat. Biomed. Eng. 3, 318–327 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lazarovits, J. et al. Supervised learning and mass spectrometry predicts the in vivo fate of nanomaterials. ACS Nano 13, 8023–8034 (2019).

    CAS 

    Google Scholar
     

  • Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).

    Article 

    Google Scholar
     

  • Repecka, D. et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat. Mach. Intell. 3, 324–333 (2021).

    Article 

    Google Scholar
     

  • De Backer, L., Cerrada, A., Pérez-Gil, J., De Smedt, S. C. & Raemdonck, K. Bio-inspired materials in drug delivery: exploring the role of pulmonary surfactant in siRNA inhalation therapy. J. Control. Release 220, 642–650 (2015).


    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img