Zephyrnet Logo

Progress and challenges in mass spectrometry-based analysis of antibody repertoires

Date:

    • Li H.
    • et al.

    Mucosal or systemic microbiota exposures shape the B cell repertoire.

    Nature. 2020; 584: 274-278

    • Forthal D.N.

    Functions of antibodies.

    Microbiol. Spectr. 2014; 2: 1-17

    • Bemark M.
    • Angeletti D.

    Know your enemy or find your friend? Induction of IgA at mucosal surfaces.

    Immunol. Rev. 2021; ()

    • Carter P.J.
    • Lazar G.A.

    Next generation antibody drugs: pursuit of the ’high-hanging fruit’.

    Nat. Rev. Drug Discov. 2017; 17: 197-223

    • Libster R.
    • et al.

    Early high-titer plasma therapy to prevent severe Covid-19 in older adults.

    N. Engl. J. Med. 2021; 384: 610-618

    • Vaisman-Mentesh A.
    • et al.

    Molecular landscape of anti-drug antibodies reveals the mechanism of the immune response following treatment with TNFα Antagonists.

    Front. Immunol. 2019; 10: 2921

    • Borrebaeck C.A.K.

    Antibodies in diagnostics – from immunoassays to protein chips.

    Immunol. Today. 2000; 21: 379-382

    • Hillman Y.
    • et al.

    Monoclonal antibody-based biosensor for point-of-care detection of type III secretion system expressing pathogens.

    Anal. Chem. 2021; 93: 928-935

    • Schramm C.

    AIRR-C Glossary of Terms.

    zenodo. 2021; https://doi.org/10.5281/zenodo.5095380

    • Wardemann H.
    • Busse C.E.

    Novel approaches to analyze immunoglobulin repertoires.

    Trends Immunol. 2017; 38: 471-482

    • Greiff V.
    • et al.

    Bioinformatic and statistical analysis of adaptive immune repertoires.

    Trends Immunol. 2015; 36: 738-749

    • Robinson W.H.

    Sequencing the functional antibody repertoire – diagnostic and therapeutic discovery.

    Nat. Rev. Rheumatol. 2014; 11: 171-182

    • Mason D.M.
    • et al.

    Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning.

    Nat. Biomed. Eng. 2021; 5: 600-612

    • Galson J.D.
    • et al.

    Studying the antibody repertoire after vaccination: practical applications.

    Trends Immunol. 2014; 35: 319-331

    • Miho E.
    • et al.

    Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires.

    Front. Immunol. 2018; 9: 224

    • Yaari G.
    • Kleinstein S.H.

    Practical guidelines for B-cell receptor repertoire sequencing analysis.

    Genome Med. 2015; 7: 121

    • Sato S.
    • et al.

    Proteomics-directed cloning of circulating antiviral human monoclonal antibodies.

    Nat. Biotechnol. 2012; 30: 1039-1043

    • Cheung W.C.
    • et al.

    A proteomics approach for the identification and cloning of monoclonal antibodies from serum.

    Nat. Biotechnol. 2012; 30: 447-452

    • Wine Y.
    • et al.

    Serology in the 21st century: the molecular-level analysis of the serum antibody repertoire.

    Curr. Opin. Immunol. 2015; 35: 89-97

    • Nesvizhskii A.I.

    Proteogenomics: concepts, applications and computational strategies.

    Nat. Methods. 2014; 11: 1114-1125

    • Lee J.
    • et al.

    Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination.

    Nat. Med. 2016; 22: 1456-1464

    • Wine Y.
    • et al.

    Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response.

    Proc. Natl. Acad. Sci. 2013; 110: 2993-2998

    • Lavinder J.J.
    • et al.

    Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires.

    Curr. Opin. Chem. Biol. 2015; 24: 112-120

    • Chen J.
    • et al.

    Proteomic analysis of Pemphigus autoantibodies indicates a larger, more diverse, and more dynamic repertoire than determined by B cell genetics.

    Cell Rep. 2017; 18: 237-247

    • Iversen R.
    • et al.

    Strong clonal relatedness between serum and gut IgA despite different plasma cell origins.

    Cell Rep. 2017; 20: 2357-2367

    • Lindesmith L.C.
    • et al.

    Sera antibody repertoire analyses reveal mechanisms of broad and pandemic strain neutralizing responses after human norovirus vaccination.

    Immunity. 2019; 50: 1530-1541

    • Xiang Y.
    • et al.

    Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2.

    Science. 2020; 370: 1479-1484

    • Lavinder J.J.
    • et al.

    Identification and characterization of the constituent human serum antibodies elicited by vaccination.

    Proc. Natl. Acad. Sci. 2014; 111: 2259-2264

    • Bondt A.
    • et al.

    Human Plasma IgG1 Repertoires Are Simple, Unique, and Dynamic.

    Social Science Research Network, 2020

    • Tomescu-Baciu A.
    • et al.

    Persistence of intrathecal oligoclonal B cells and IgG in multiple sclerosis.

    J. Neuroimmunol. 2019; 333: 576966

    • Lee J.
    • et al.

    Persistent antibody clonotypes dominate the serum response to influenza over multiple years and repeated vaccinations.

    Cell Host Microbe. 2019; 25: 367-376

    • Johansen J.N.
    • et al.

    Intrathecal BCR transcriptome in multiple sclerosis versus other neuroinflammation: equally diverse and compartmentalized, but more mutated, biased and overlapping with the proteome.

    Clin. Immunol. 2015; 160: 211-225

    • Teraguchi S.
    • et al.

    Methods for sequence and structural analysis of B and T cell receptor repertoires.

    Comput. Struct. Biotechnol. J. 2020; 18: 2000-2011

    • Song M.K.
    • et al.

    Light chain of natural antibody plays a dominant role in protein antigen binding.

    Biochem. Biophys. Res. Commun. 2000; 268: 390-394

    • Chailyan A.
    • et al.

    The association of heavy and light chain variable domains in antibodies: implications for antigen specificity.

    FEBS J. 2011; 278: 2858-2866

    • Akbar R.
    • et al.

    A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding.

    Cell Rep. 2021; 34: 108856

    • Xiang Y.
    • et al.

    Integrative proteomics identifies thousands of distinct, multi-epitope, and high-affinity nanobodies.

    Cell Syst. 2021; 12: 220-234

    • Voss W.N.
    • et al.

    Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes.

    Science. 2021; 372: 1108-1112

    • Benner R.
    • et al.

    ‘Background’ immunoglobulin production: measurement, biological significance and regulation.

    Immunol. Today. 1982; 3: 243-249

    • Amanna I.J.
    • et al.

    Duration of humoral immunity to common viral and vaccine antigens.

    N. Engl. J. Med. 2007; 357: 1903-1915

    • Bachmann M.F.
    • et al.

    The role of antibody concentration and avidity in antiviral protection.

    Science. 1997; 276: 2024-2027

    • Bonissone S.R.
    • et al.

    Serum proteomics expands on high-affinity antibodies in immunized rabbits than deep B-cell repertoire sequencing alone.

    BioRxiv. 2020; ()

    • Curtis N.C.
    • Lee J.

    Beyond bulk single-chain sequencing: getting at the whole receptor.

    Curr. Opin. Syst. Biol. 2020; 24: 93-99

    • Iype J.
    • et al.

    Differences in self-recognition between secreted antibody and membrane-bound B cell antigen receptor.

    J. Immunol. 2019; 202: 1417-1427

    • Shi Z.
    • et al.

    More than one antibody of individual B cells revealed by single-cell immune profiling.

    Cell Discov. 2019; 5 ()

    • Safonova Y.
    • et al.

    IgRepertoireConstructor: a novel algorithm for antibody repertoire construction and immunoproteogenomics analysis.

    Bioinformatics. 2015; 31: i53-i61

    • Benner R.
    • et al.

    The bone marrow: the major source of serum immunoglobulins, but still a neglected site of antibody formation.

    Clin. Exp. Immunol. 1981; 46: 1-8

    • Brown, A. J.
    • et al.

    Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires.

    Mol. Syst. Des. Eng. 2019; 4: 701-736

    • Friedensohn S.
    • et al.

    Advanced methodologies in high-throughput sequencing of immune repertoires.

    Trends Biotechnol. 2016; 35: 203-214

    • Setliff I.
    • et al.

    High-throughput mapping of B cell receptor sequences to antigen specificity.

    Cell. 2019; 179: 1636-1646

    • Shaw J.B.
    • et al.

    Direct determination of antibody chain pairing by top-down and middle-down mass spectrometry using electron capture dissociation and ultraviolet photodissociation.

    Anal. Chem. 2020; 92: 766-773

  • Understanding the human antibody repertoire.

    mAbs. 2020; 12: 1729683

    • Robert P.A.
    • Meyer-Hermann M.

    A 3D structural affinity model for multi-epitope in silico germinal center simulations.

    BioRxiv. 2019; ()

    • Robert P.A.
    • et al.

    Induction of broadly neutralizing antibodies in germinal centre simulations.

    Curr. Opin. Biotechnol. 2018; 51: 137-145

    • Mayer A.
    • et al.

    How a well-adapted immune system is organized.

    Proc. Natl. Acad. Sci. 2015; 112: 5950-5955

    • Greiff V.
    • et al.

    A minimal model of peptide binding predicts ensemble properties of serum antibodies.

    BMC Genomics. 2012; 13: 79

    • Kanyavuz A.
    • et al.

    Breaking the law: unconventional strategies for antibody diversification.

    Nat. Rev. Immunol. 2019; 19: 355-368

    • Raybould M.I.J.
    • et al.

    Five computational developability guidelines for therapeutic antibody profiling.

    Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 4025-4030

    • Pyzik M.
    • et al.

    The neonatal Fc receptor (FcRn): a misnomer?.

    Front. Immunol. 2019; 10: 1540

    • Hmiel L.K.
    • et al.

    Post-translational structural modifications of immunoglobulin G and their effect on biological activity.

    Anal. Bioanal. Chem. 2015; 407: 79-94

    • Larsen M.D.
    • et al.

    Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity.

    Science. 2021; 371eabc8378

    • Bournazos S.
    • et al.

    Antibody fucosylation predicts disease severity in secondary dengue infection.

    Science. 2021; 372: 1102-1105

    • Selman M.H.J.
    • et al.

    Changes in antigen-specific IgG1 Fc N-glycosylation upon influenza and tetanus vaccination.

    Mol. Cell. Proteomics. 2012; 11M111.014563

    • Alfaro J.A.
    • et al.

    The emerging landscape of single-molecule protein sequencing technologies.

    Nat. Methods. 2021; 18: 604-617

    • Timp W.
    • Timp G.

    Beyond mass spectrometry, the next step in proteomics.

    Sci. Adv. 2020; 6eaax8978

    • Corrie B.D.
    • et al.

    iReceptor: a platform for querying and analyzing antibody/B-cell and T-cell receptor repertoire data across federated repositories.

    Immunol. Rev. 2018; 284: 24-41

    • Hershberg U.
    • Prak E.T.L.

    The analysis of clonal expansions in normal and autoimmune B cell repertoires.

    Philos. Trans. R. Soc. B. 2015; 370: 20140239

    • Khan T.A.
    • et al.

    Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting.

    Sci. Adv. 2016; 2e1501371

    • Zhang Y.
    • et al.

    Protein analysis by shotgun/bottom-up proteomics.

    Chem. Rev. 2013; 113: 2343-2394

    • Finoulst I.
    • et al.

    Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices.

    J. Biomed. Biotechnol. 2011; 2011e245291

    • Fishman J.B.
    • Berg E.A.

    Protein A and protein G purification of antibodies.

    Cold Spring Harb. Protoc. 2019; 2019prot099143

    • Grodzki A.C.
    • Berenstein E.

    Antibody purification: ammonium sulfate fractionation or gel filtration.

    in: Oliver C. Jamur M.C. Immunocytochemical Methods and Protocols. Humana Press, 2010: 15-26

    • Singh N.
    • Singh N.

    Blood plasma from survivors of COVID-19: a novel and next frontier approach to fight against pandemic coronavirus.

    Int. J. Immunol. Immunother. 2020; 7: 045

    • Boutz D.R.
    • et al.

    Proteomic identification of monoclonal antibodies from serum.

    Anal. Chem. 2014; 86: 4758-4766

    • Gillet L.C.
    • et al.

    Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing.

    Annu. Rev. Anal. Chem. 2016; 9: 449-472

    • Swaney D.L.
    • et al.

    Value of using multiple proteases for large-scale mass spectrometry-based proteomics.

    J. Proteome Res. 2010; 9: 1323-1329

    • Mora T.
    • et al.

    Maximum entropy models for antibody diversity.

    Proc. Natl. Acad. Sci. 2010; 107: 5405-5410

    • Tsiatsiani L.
    • Heck A.J.R.

    Proteomics beyond trypsin.

    FEBS J. 2015; 282: 2612-2626

    • Srzentić K.
    • et al.

    Interlaboratory study for characterizing monoclonal antibodies by top-down and middle-down mass spectrometry.

    J. Am. Soc. Mass Spectrom. 2020; 31: 1783-1802

    • Foote J.
    • Eisen H.N.

    Breaking the affinity ceiling for antibodies and T cell receptors.

    Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 10679-10681

    • Bache N.
    • et al.

    A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics.

    Mol. Cell. Proteomics. 2018; 17: 2284-2296

    • Keshishian H.
    • et al.

    Multiplexed, quantitative workflow for sensitive biomarker discovery in plasma yields novel candidates for early myocardial injury.

    Mol. Cell. Proteomics. 2015; 14: 2375-2393

    • Qian W.-J.
    • et al.

    Enhanced detection of low abundance human plasma proteins using a tandem IgY12-SuperMix immunoaffinity aeparation atrategy.

    Mol. Cell. Proteomics. 2008; 7: 1963-1973

    • Blume J.E.
    • et al.

    Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona.

    Nat. Commun. 2020; 11: 3662

    • Meier F.
    • et al.

    Online parallel accumulation–serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer.

    Mol. Cell. Proteomics. 2018; 17: 2534-2545

    • Hebert A.S.
    • et al.

    Comprehensive single-shot proteomics with FAIMS on a hybrid orbitrap mass spectrometer.

    Anal. Chem. 2018; 90: 9529-9537

    • Meier F.
    • et al.

    BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes.

    Nat. Methods. 2018; 15: 440-448

    • Messner C.B.
    • et al.

    Ultra-fast proteomics with scanning SWATH.

    Nat. Biotechnol. 2021; 39: 846-854

    • Ludwig C.
    • et al.

    Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial.

    Mol. Syst. Biol. 2018; 14e8126

    • Li J.
    • et al.

    TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples.

    Nat. Methods. 2020; 17: 399-404

    • Geyer P.E.
    • et al.

    Plasma proteome profiling to assess human health and disease.

    Cell Syst. 2016; 2: 185-195

    • Bruderer R.
    • et al.

    Analysis of 1508 plasma samples by capillary-flow data-independent acquisition profiles proteomics of weight loss and maintenance.

    Mol. Cell. Proteomics. 2019; 18: 1242-1254

    • Hein M.Y.
    • et al.

    A human interactome in three quantitative dimensions organized by stoichiometries and abundances.

    Cell. 2015; 163: 712-723

    • Huttlin E.L.
    • et al.

    The BioPlex network: a systematic exploration of the human interactome.

    Cell. 2015; 162: 425-440

    • Cox J.
    • Mann M.

    MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.

    Nat. Biotechnol. 2008; 26: 1367-1372

    • Ma B.
    • et al.

    PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry.

    Rapid Commun. Mass Spectrom. 2003; 17: 2337-2342

    • Kim S.
    • Pevzner P.A.

    MS-GF+ makes progress towards a universal database search tool for proteomics.

    Nat. Commun. 2014; 5: 5277

    • Kong A.T.
    • et al.

    MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics.

    Nat. Methods. 2017; 14: 513-520

    • Orsburn B.C.

    Proteome Discoverer – a community enhanced data processing suite for protein informatics.

    Proteomes. 2021; 9: 15

    • Avram O.
    • et al.

    PASA: proteomic analysis of serum antibodies web server.

    PLoS Comput. Biol. 2021; 17e1008607

    • Tran N.H.
    • et al.

    Complete de novo assembly of monoclonal antibody sequences.

    Sci. Rep. 2016; 6: 31730

    • Collins B.C.
    • et al.

    Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry.

    Nat. Commun. 2017; 8: 291

    • Navarro P.
    • et al.

    A multicenter study benchmarks software tools for label-free proteome quantification.

    Nat. Biotechnol. 2016; 34: 1130-1136

    • Colaert N.
    • et al.

    Analysis of the resolution limitations of peptide identification algorithms.

    J. Proteome Res. 2011; 10: 5555-5561

    • Čaval T.
    • et al.

    The lysosomal endopeptidases Cathepsin D and L are selective and effective proteases for the middle-down characterization of antibodies.

    FEBS J. 2021; ()

    • Greisch J.-F.
    • et al.

    Generating informative sequence tags from antigen-binding regions of heavily glycosylated IgA1 antibodies by native top-down electron capture dissociation.

    J. Am. Soc. Mass Spectrom. 2021; 32: 1326-1335

    • Greiff V.
    • et al.

    Mining adaptive immune receptor repertoires for biological and clinical information using machine learning.

    Curr. Opin. Syst. Biol. 2020; 24: 109-119

    • Elhanati Y.
    • et al.

    Inferring processes underlying B-cell repertoire diversity.

    Philos. Trans. R. Soc. B. 2015; 370: 20140243

    • Greiff V.
    • et al.

    Learning the high-dimensional immunogenomic features that predict public and private antibody repertoires.

    J. Immunol. 2017; 199: 2985-2997

    • Collins A.M.
    • et al.

    Germline immunoglobulin genes: disease susceptibility genes hidden in plain sight?.

    Curr. Opin. Syst. Biol. 2020; 24: 100-108

    • Watson C.T.
    • et al.

    The individual and population genetics of antibody immunity.

    Trends Immunol. 2017; 38: 459-470

    • Xu J.L.
    • Davis M.M.

    Diversity in the CDR3 region of VH is sufficient for most antibody specificities.

    Immunity. 2000; 13: 37-45

    • Glanville J.
    • et al.

    Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire.

    Proc. Natl. Acad. Sci. U. S. A. 2009; 06: 20216-20221

  • Number and distribution of lymphocytes in man. A critical analysis.

    J. Mol. Med. 1974; 52: 511-515

    • Nutt S.L.
    • et al.

    The generation of antibody-secreting plasma cells.

    Nat. Rev. Immunol. 2015; 15: 160-171

    • Helmreich E.
    • et al.

    The secretion of antibody by isolated lymph node cells.

    J. Biol. Chem. 1961; 236: 464

    • Eyer K.
    • et al.

    Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring.

    Nat. Biotechnol. 2017; 35: 977-982

    • Cerutti A.
    • et al.

    Immunoglobulin responses at the mucosal interface.

    Annu. Rev. Immunol. 2011; 29: 273-293

    • Manz R.A.
    • et al.

    Maintenance of serum antibody levels.

    Annu. Rev. Immunol. 2005; 23: 367-386

    • Vieira P.
    • Rajewsky K.

    The half-lives of serum immunoglobulins in adult mice.

    Eur. J. Immunol. 1988; 18: 313-316

    • Datta-Mannan A.
    • et al.

    Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pI reduces non-specific binding and improves the pharmacokinetics.

    mAbs. 2015; 7: 483-493

    • Schoch A.
    • et al.

    Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics.

    Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 5997-6002

    • Sikorski K.
    • et al.

    A high-throughput pipeline for validation of antibodies.

    Nat. Methods. 2018; 15: 909

    • Larman H.B.
    • et al.

    Autoantigen discovery with a synthetic human peptidome.

    Nat. Biotechnol. 2011; 29: 535-541

    • Kunik V.
    • Ofran Y.

    The indistinguishability of epitopes from protein surface is explained by the distinct binding preferences of each of the six antigen-binding loops.

    Protein Eng. Des. Sel. 2013; 26: 599-609

    • Georgiev I.S.
    • et al.

    Delineating antibody recognition in polyclonal sera from patterns of HIV-1 isolate neutralization.

    Science. 2013; 340: 751-756

  • One by one – insights into complex immune responses through functional single-cell analysis.

    Chim. Int. J. Chem. 2020; 74: 716-723

    • Kräutler N.J.
    • et al.

    Quantitative and qualitative analysis of humoral immunity reveals continued and personalized evolution in chronic viral infection.

    Cell Rep. 2020; 30: 997-1012

    • Gérard A.
    • et al.

    High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics.

    Nat. Biotechnol. 2020; 38: 715-721

    • Cui W.
    • et al.

    Top-down mass spectrometry: recent developments, applications and perspectives.

    Analyst. 2011; 136: 3854-3864

    • Gregorich Z.R.
    • et al.

    Proteomics in heart failure: top-down or bottom-up?.

    Pflugers Arch. 2014; 466: 1199-1209

    • Catherman A.D.
    • et al.

    Top down proteomics: facts and perspectives.

    Biochem. Biophys. Res. Commun. 2014; 445: 683-693

    • Kachuk C.
    • Doucette A.A.

    The benefits (and misfortunes) of SDS in top-down proteomics.

    J. Proteome. 2018; 175: 75-86

    • Vasicek L.A.
    • et al.

    Direct quantitation of therapeutic antibodies for pharmacokinetic studies using immuno-purification and intact mass analysis.

    Bioanalysis. 2019; ()

    • Chen B.
    • et al.

    Top-down proteomics: ready for prime time?.

    Anal. Chem. Wash. 2018; 90: 110-127

    • Wang Z.
    • et al.

    Top-down mass spectrometry analysis of human serum autoantibody antigen-binding fragments.

    Sci. Rep. 2019; 9: 2345

    • Kellie J.F.
    • et al.

    A whole-molecule immunocapture LC–MS approach for the in vivo quantitation of biotherapeutics.

    Bioanalysis. 2016; 8: 2103-2114

    • Lanshoeft C.
    • et al.

    Generic hybrid ligand binding assay liquid chromatography high-resolution mass spectrometry-based workflow for multiplexed human immunoglobulin G1 quantification at the intact protein level: application to preclinical pharmacokinetic studies.

    Anal. Chem. 2017; 89: 2628-2635

    • Boer M.A. den
    • et al.

    Selectivity over coverage in de novo sequencing of IgGs.

    Chem. Sci. 2020; 11: 11886-11896

    • Nyman T.A.
    • et al.

    Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells.

    Expert Rev. Proteomics. 2017; 14: 395-407

    • An B.
    • et al.

    Toward sensitive and accurate analysis of antibody biotherapeutics by liquid chromatography coupled with mass spectrometry.

    Drug Metab. Dispos. 2014; 42: 1858-1866

    • Frank A.
    • Pevzner P.

    PepNovo: de novo peptide sequencing via probabilistic network modeling.

    Anal. Chem. 2005; 77: 964-973

    • Fischer B.
    • et al.

    NovoHMM: a hidden Markov model for de novo peptide sequencing.

    Anal. Chem. 2005; 77: 7265-7273

    • Guthals A.
    • et al.

    Sequencing-grade de novo analysis of MS/MS triplets (CID/HCD/ETD) from overlapping peptides.

    J. Proteome Res. 2013; 12: 2846-2857

    • Bandeira N.
    • et al.

    Automated de novo protein sequencing of monoclonal antibodies.

    Nat. Biotechnol. 2008; 26: 1336-1338

  • PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
    Click here to access.

    Source: https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(21)00193-1?rss=yes

    spot_img

    Latest Intelligence

    spot_img