Zephyrnet Logo

Interlinking spatial dimensions and kinetic processes in dissipative materials to create synthetic systems with lifelike functionality – Nature Nanotechnology

Date:

  • Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Balzani, V., Credi, A., Raymo, F. & Stoddart, J. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Feringa, B. L., van Delden, R. A., Koumura, N. & Geertsema, E. M. Chiroptical molecular switches. Chem. Rev. 100, 1789–1816 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Shirai, Y., Osgood, A. J., Zhao, Y., Kelly, K. F. & Tour, J. M. Directional control in thermally driven single-molecule nanocars. Nano Lett. 5, 2330–2334 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Samudra, S. et al. Self-powered enzyme micropumps. Nat. Chem. 6, 415–422 (2014).

    Article 

    Google Scholar
     

  • Balazs, A. C., Fischer, P. & Sen, A. Intelligent nano/micromotors: using free energy to fabricate organized systems driven far from equilibrium. Acc. Chem. Res. 51, 2979 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Karshalev, E., Esteban-Fernandez de Avila, B. & Wang, J. Micromotors for ‘chemistry-on-the-fly’. J. Am. Chem. Soc. 140, 3810–3820 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fernández‐Medina, M., Ramos‐Docampo, M. A., Hovorka, O., Salgueiriño, V. & Städler, B. Recent advances in nano‐ and micromotors. Adv. Funct. Mater. 30, 1908283 (2020).

    Article 

    Google Scholar
     

  • Walther, A. Viewpoint: From responsive to adaptive and interactive materials and materials systems: a roadmap. Adv. Mater. 32, 1905111 (2019).

    Article 

    Google Scholar
     

  • Cafferty, B. J. et al. Robustness, entrainment, and hybridization in dissipative molecular networks, and the origin of life. J. Am. Chem. Soc. 141, 8289–8295 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Semenov, S. N. et al. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature 537, 656–660 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17, 371–382 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shum, H. & Balazs, A. C. Synthetic quorum sensing in model microcapsule colonies. Proc. Natl Acad. Sci. USA 114, 8475–8480 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kondepudi, D. & Prigogine, I. Modern Thermodynamics: from Heat Engines to Dissipative Structures (Wiley, 2014).

  • Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952).


    Google Scholar
     

  • Eckert, K., Bestehorn, M. & Thess, A. Square cells in surface-tension-driven Bénard convection: experiment and theory. J. Fluid Mech. 356, 155–197 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Chiu, D. T. et al. Chemical transformations in individual ultrasmall biomimetic containers. Science 283, 1892–1895 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Tu, B. P., Kudlicki, A., Rowicka, M. & McKnight, S. L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310, 1152–1158 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Balazs, A., C. et al. Designing Biomimetic, Dissipative Material Systems (US Department of Energy Office of Scientific and Technical Information, 2016).

  • Eder, M., Amini, S. & Fratzl, P. Biological composites—complex structures for functional diversity. Science 362, 543–547 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Oxman, N. Material-Based Design Computation. PhD thesis, Massachusetts Institute of Technology (2010).

  • Costa, J., Bader, C., Sharma, S., Xu, J. & Oxman, N. Spinning smooth and striated: integrated design and digital fabrication of bio-homeomorphic structures across scales. In Proc. IASS Annual Symposia, IASS 2018 Boston Symposium: Reimagining Material and Design (International Association for Shell and Spatial Structures (IASS), 2018).

  • Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Trudy, R. L. Designing soft robots as robotic materials. Acc. Mater. Res. 2, 854–857 (2021).

    Article 

    Google Scholar
     

  • Yasa, O. et al. An overview of soft robotics. Annu. Rev. Control Robot. Auton. Syst. 6, 1–29 (2023).

    Article 

    Google Scholar
     

  • Roy, D., Cambre, J. N. & Sumerlin, B. S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35, 278–301 (2010).

    Article 
    CAS 

    Google Scholar
     

  • McCracken, J. M., Donovan, B. R. & White, T. J. Materials as machines. Adv. Mater. 32, 1906564 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Recent advances in stimuli‐responsive shape‐morphing hydrogels. Adv. Funct. Mater. 32, 2203323 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article 

    Google Scholar
     

  • Liu, J., Gao, Y., Lee, Y.-J. & Yang, S. Responsive and foldable soft materials. Trends Chem. 2, 107–122 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kang, M. Sublime Dreams of Living Machines: the Automaton in the European Imagination (Harvard University Press, 2011).

  • Yoshida, R. & Ueki, T. Evolution of self-oscillating polymer gels as autonomous polymer systems. NPG Asia Mater. 6, e107 (2014).

    Article 
    CAS 

    Google Scholar
     

  • van Roekel, H. W. H. et al. Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach. Chem. Soc. Rev. 44, 7465–7483 (2015).

    Article 

    Google Scholar
     

  • Semenov, S. N. et al. Rational design of functional and tunable oscillating enzymatic networks. Nat. Chem. 7, 160–165 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wong, A. S. Y. & Huck, W. T. S. Grip on complexity in chemical reaction networks. Beilstein J. Org. Chem. 13, 1486–1497 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fusi, G., Del Giudice, D., Skarsetz, O., Di Stefano, S. & Walther, A. Autonomous soft robots empowered by chemical reaction networks. Adv. Mater. 35, 2209870 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Grzybowski, B. & Huck, W. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Baytekin, B., Cezan, S. D., Baytekin, H. T. & Grzybowski, B. A. Artificial heliotropism and nyctinasty based on optomechanical feedback and no electronics. Soft Robot. 5, 93–98 (2018).

    Article 

    Google Scholar
     

  • Sharma, C. & Walther, A. Self-regulating colloidal co-assemblies that accelerate their own destruction via chemo-structural feedback. Angew. Chem. Int. Ed. 61, e2022015 (2022).

    Article 

    Google Scholar
     

  • Morim, D. R. et al. Opto-chemo-mechanical transduction in photoresponsive gels elicits switchable self-trapped beams with remote interactions. Proc. Natl Acad. Sci. USA 117, 3953–3959 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Shklyaev, O. E. & Balazs, A. C. Lifelike behavior of chemically oscillating mobile capsules. Matter 5, 3464–3484 (2022).

    Article 
    CAS 

    Google Scholar
     

  • He, X. et al. Creating homeostasis in synthetic materials via self-regulating chemo-mechano-chemical systems with built-in feedback loops. Nature 487, 214–218 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, P. et al. A programmable soft chemomechanical actuator exploiting a catalyzed photochemical water-oxidation reaction. Soft Matter 13, 7312–7317 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Grinthala, A. & Aizenberg, J. Adaptive all the way down: building responsive materials from hierarchies of chemomechanical feedback. Chem. Soc. Rev. 42, 7072–7085 (2013).

    Article 

    Google Scholar
     

  • Ma, X. et al. Reversed Janus micro/nanomotors with internal chemical engine. ACS Nano 10, 8751–8759 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xu, L., Wang, A., Li, X. & Oh, K. W. Passive micropumping in microfluidics for point-of-care testing. Biomicrofluidics 14, 031503 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, H., Liu, X., Wang, L. & Ma, X. Fundamentals and applications of enzyme powered micro/nano-motors. Bioact. Mater. 6, 1727–1749 (2021).

    CAS 

    Google Scholar
     

  • Ortiz-Rivera, I., Shum, H., Agrawal, A., Sen, A. & Balazs, A. C. Convective flow reversal in self-powered enzyme micropumps. Proc. Natl Acad. Sci. USA 113, 2585–2590 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Valdez, L., Shum, H., Ortiz-Rivera, I., Balazs, A. C. & Sen, A. Solutal and thermal buoyancy effects in self-powered phosphatase micropumps. Soft Matter 13, 2800–2807 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shklyaev, O. E., Shum, H., Sen, A. & Balazs, A. C. Harnessing surface-bound enzymatic reactions to organize microcapsules in solution. Sci. Adv. 2, e1501835 (2016).

    Article 

    Google Scholar
     

  • Laskar, A., Shklyaev, O. E. & Balazs, A. C. Designing self-propelled, chemically active sheets: wrappers, flappers and creepers. Sci. Adv. 4, eaav1745 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Manna, R. K., Shklyaev, O. E., Stone, H. A. & Balazs, A. C. Chemically controlled shape-morphing of elastic sheets. Mater. Horiz. 7, 2314–2327 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Manna, R. K., Shklyaev, O. E. & Balazs, A. C. Chemically driven multimodal locomotion of active, flexible sheets. Langmuir 39, 780–789 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Laskar, A., Manna, R. K., Shklyaev, O. E. & Balazs, A. C. Computer modeling reveals modalities to actuate mutable, active matter. Nat. Commun. 13, 2689 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mathesh, M., Bhattarai, E. & Yang, W. 2D active nanobots based on soft nanoarchitectonics powered by an ultralow fuel concentration. Angew. Chem. Int. Ed. 61, e202113801 (2021).

    Article 

    Google Scholar
     

  • Kinstlinger, I. S. & Miller, J. S. 3D-printed fluidic networks as vasculature for engineered tissue. Lab Chip 16, 2025–2043 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C., Yu, Y., Wang, X., Wang, Q. & Shang, L. Cellular fluidic-based vascular networks for tissue engineering. Eng. Regen. 2, 171–174 (2021).


    Google Scholar
     

  • Wu, W. et al. Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter 6, 739–742 (2010).

    Article 
    CAS 

    Google Scholar
     

  • O’Connor, C., Brady, E., Zheng, Y., Moore, E. & Stevens, K. R. Engineering the multiscale complexity of vascular networks. Nat. Rev. Mater. 7, 702–716 (2022).

    Article 

    Google Scholar
     

  • Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Taylor, J. M. et al. Biomimetic and biologically compliant soft architectures via 3D and 4D assembly methods: a perspective. Adv. Mater. 34, 2108391 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Truby, R. L. et al. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30, 1706383 (2018).

    Article 

    Google Scholar
     

  • Valentine, A. D. et al. Hybrid 3D printing of soft electronics. Adv. Mater. 29, 1703817 (2017).

    Article 

    Google Scholar
     

  • Maiti, S., Shklyaev, O. E., Balazs, A. C. & Sen, A. Self-organization of fluids in a multi-enzymatic pump system. Langmuir 35, 3724–3732 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qian, S., Wang, X. & Yan, W. Piezoelectric fibers for flexible and wearable electronics. Front. Optoelectron. 16, 3 (2023).

    Article 

    Google Scholar
     

  • Ning, X. et al. Mechanically active materials in three-dimensional mesostructures. Sci. Adv. 4, eaat8313 (2018).

    Article 

    Google Scholar
     

  • Ni, X. et al. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nat. Commun. 13, 5576 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y., van den Berg, J. & Crosby, A. J. Autonomous snapping and jumping polymer gels. Nat. Mater. 20, 1695–1701 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction. Nat. Nanotechnol. 17, 1303–1310 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. Self-regulated non-reciprocal motions in single-material microstructures. Nature 605, 76–83 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Eckstein, T. F., Vidal-Henriquez, E., Bae, A. J. & Gholami, J. Spatial heterogeneities shape the collective behavior of signaling amoeboid cells. Sci. Signal. 13, eaaz3975 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Singer, G., Araki, T. & Weijer, C. J. Oscillatory cAMP cell–cell signalling persists during multicellular Dictyostelium development. Commun. Biol. 2, 139 (2019).

    Article 

    Google Scholar
     

  • Kim, Y. K., Wang, X., Mondkar, P., Bukusoglu, E. & Abbott, N. L. Self-reporting and self-regulating liquid crystals. Nature 557, 539–544 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, M. et al. Living additive manufacturing: transformation of parent gels into diversely functionalized daughter gels made possible by visible light photo-redox catalysis. ACS Cent. Sci. 3, 124–134 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Singh, A., Kuksenok, O., Johnson, J. A. & Balazs, A. C. Photo-regeneration of severed gel with iniferter-mediated photo-growth. Soft Matter 13, 1978–1987 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Beziau, A. et al. Photoactivated structurally tailored and engineered macromolecular (STEM) gels as precursors for materials with spatially differentiated mechanical properties. Polymer 126, 224–230 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cuthbert, J. et al. Transformable materials: structurally tailored and engineered macromolecular (STEM) gels by controlled radical polymerization. Macromolecules 51, 3808–3817 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xue, L. et al. Light-regulated growth from dynamic swollen substrates for making rough surfaces. Nat. Commun. 11, 963 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, X., Wang, S., Xue, L., Wang, H. & Cui, J. Growing strategy for postmodifying cross-linked polymers’ bulky size, shape, and mechanical properties. ACS Appl. Mater. Interfaces 14, 8473–8481 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chatterjee, R. et al. Controllable growth of interpenetrating or random copolymer networks. Soft Matter 17, 7177–7187 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Matsuda, T., Kawakami, R., Namba, R., Nakajima, T. & Gong, J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363, 504–508 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dou, Y., Dhatt-Gauthier, K. & Bishop, K. J. M. Thermodynamic costs of dynamic function in active soft matter. Curr. Opin. Solid State Mater. Sci. 23, 28–40 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. et al. The energy flow and mechanical modeling of soft chemo-mechanical machines. J. Appl. Phys. 124, 165111 (2018).

    Article 

    Google Scholar
     

  • Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ford, M. J., Ohm, Y., Chin, K. & Majidi, C. Composites of functional polymers: toward physical intelligence using flexible and soft materials. J. Mater. Res. 37, 2–24 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bensaude-Vincent, B. Materials as Machines 101–111 (Boston Studies in the Philosophy and History of Science Vol. 274, Springer, 2010).

  • Sitti, M. Physical intelligence as a new paradigm. Extreme Mech. Lett. 46, 101340 (2021).

    Article 

    Google Scholar
     

  • Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).

    Article 
    CAS 

    Google Scholar
     

  • McEvoy, M. A. & Correll, N. Materials science. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bénazet, J.-D. & Zeller, R. Vertebrate limb development: moving from classical morphogen gradients to an integrated 4-dimensional patterning system. Cold Spring Harb. Perspect. Biol. 1, 001339 (2009).

    Article 

    Google Scholar
     

  • Cazimoglu, I., Booth, M. J. & Bayley, H. A lipid-based droplet processor for parallel chemical signals. ACS Nano 15, 20214–20224 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Light-powered, fuel-free oscillation, migration, and reversible manipulation of multiple cargo types by micromotor swarms. ACS Nano 17, 251–262 (2022).

    Article 

    Google Scholar
     

  • Manna, R. K., Laskar, A., Shklyaev, O. E. & Balazs, A. C. Harnessing the power of chemically active sheets in solution. Nat. Rev. Phys. 4, 125–137 (2022).

    Article 

    Google Scholar
     

  • Elani, Y., Law, R. & Ces, O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat. Commun. 5, 5305 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Fang, Y., Yashin, V. V., Levitan, S. P. & Balazs, A. C. Pattern recognition with ‘materials that compute’. Sci. Adv. 2, E1601114 (2016).

    Article 

    Google Scholar
     

  • Fang, Y., Yashin, V. V., Levitan, S. P. & Balazs, A. C. Designing self-powered materials systems that perform pattern recognition. Chem. Commun. 53, 7692–7706 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jing, L., Li, K., Yang, H. & Chen, P.-Y. Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Mater. Horiz. 7, 54–70 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Buckner, T. L., Bilodeau, R. A., Kim, S. Y. & Kramer-Bottiglio, R. Roboticizing fabric by integrating functional fibers. Proc. Natl Acad. Sci. USA 17, 25360–25369 (2020).

    Article 

    Google Scholar
     

  • Hassani, F. A. et al. Smart materials for smart healthcare—moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater. 1, 92–124 (2020).

    Article 

    Google Scholar
     

  • Cui, H. et al. Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science 376, 1287–1293 (2022).

    Article 
    CAS 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img