Zephyrnet Logo

A PETase enzyme synthesised in the chloroplast of the microalga Chlamydomonas reinhardtii is active against post-consumer plastics – Scientific Reports

Date:

  • Chen, C. C., Dai, L., Ma, L. & Guo, R. T. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4, 114–126 (2020).

    Article  PubMed  Google Scholar 

  • Shah, A. A., Hasan, F., Hameed, A. & Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 26, 246–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Pathak, V. M. & Navneet. Review on the current status of polymer degradation: A microbial approach. Bioresour. Bioprocess. 4, (2017).

  • Kaushal, J., Khatri, M. & Arya, S. K. Recent insight into enzymatic degradation of plastics prevalent in the environment: A mini-review. Clean. Eng. Technol. 2, 100083 (2021).

    Article  Google Scholar 

  • Tokiwa, Y., Calabia, B. P., Ugwu, C. U. & Aiba, S. Biodegradability of plastics. Int. J. Mol. Sci. 10, 3722–3742 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemsworth, G. R., Henrissat, B., Davies, G. J. & Walton, P. H. Discovery and characterization of a new family of lytic polysaccharide mono-oxygenases. Nat. Chem. Biol. 10, 122–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Müller, G., Várnai, A., Johansen, K. S., Eijsink, V. G. H. & Horn, S. J. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnol. Biofuels 8, 1–9 (2015).

    Article  Google Scholar 

  • Vaaje-kolstad, G. An oxidative enzyme boosting the. Science 219, 219–223 (2010).

    Article  Google Scholar 

  • Serra, I. et al. Activity and substrate specificity of lytic polysaccharide monooxygenases: An ATR FTIR-based sensitive assay tested on a novel species from Pseudomonas putida. Protein Sci. 31, 591–601 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Breslmayr, E. et al. A fast and sensitive activity assay for lytic polysaccharide monooxygenase. Biotechnol. Biofuels 11, 1–13 (2018).

    Article  Google Scholar 

  • Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. U. S. A. 111, 10239–10244 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a persistent marine pollutant. Annu. Rev. Environ. Resour. 42, 1–26 (2017).

    Article  Google Scholar 

  • Gregory, M. R. Environmental implications of plastic debris in marine settings-entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B. Biol. Sci. 364, 2013–2025 (2009).

    Article  Google Scholar 

  • Halden, R. U. Plastics and health risks. Annu. Rev. Public Health 31, 179–194 (2010).

    Article  PubMed  Google Scholar 

  • Yang, Y., Yang, J. & Jiang, L. Comment on “a bacterium that degrades and assimilates poly(ethylene terephthalate) “. Science (80-). 353, 759 (2016).

    Article  CAS  Google Scholar 

  • Austin, H. P. et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. U. S. A. 115, E4350–E4357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott, B. C. et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl. Acad. Sci. U. S. A. 117, 25476–25485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer-Cifuentes, I. E. & Öztürk, B. Mle046 is a marine mesophilic MHETase-like enzyme. Front. Microbiol. 12, 1–9 (2021).

    Article  Google Scholar 

  • Tournier, V. et al. Enzymes’ power for plastics degradation. Chem. Rev. https://doi.org/10.1021/acs.chemrev.2c00644 (2023).

    Article  PubMed  Google Scholar 

  • Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Buchholz, P. C. F. et al. Plastics degradation by hydrolytic enzymes: The plastics-active enzymes database—PAZy. Proteins Struct. Funct. Bioinform. 90, 1443–1456 (2022).

    Article  CAS  Google Scholar 

  • Puspitasari, N., Tsai, S. L. & Lee, C. K. Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs. Int. J. Biol. Macromol. 176, 157–164 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Ronkvist, Å. M., Xie, W., Lu, W. & Gross, R. A. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42, 5128–5138 (2009).

    Article  CAS  Google Scholar 

  • Pirillo, V., Orlando, M., Tessaro, D., Pollegioni, L. & Molla, G. An efficient protein evolution workflow for the improvement of bacterial PET hydrolyzing enzymes. Int. J. Mol. Sci. 23, 264 (2022).

    Article  CAS  Google Scholar 

  • Wei, R. et al. Mechanism-based design of efficient PET hydrolases. ACS Catal. 12, 3382–3396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaber, Y. et al. Heterologous expression of lytic polysaccharide monooxygenases (LPMOs). Biotechnol. Adv. 43, 107583 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Gong, Y., Hu, H., Gao, Y., Xu, X. & Gao, H. Microalgae as platforms for production of recombinant proteins and valuable compounds: Progress and prospects. J. Ind. Microbiol. Biotechnol. 38, 1879–1890 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Rasala, B. A. & Mayfield, S. P. Photosynthetic biomanufacturing in green algae; Production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth. Res. 123, 227–239 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Dyo, Y. M. & Purton, S. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiol. (U.K.) 164, 113–121 (2018).

    Article  CAS  Google Scholar 

  • Changko, S., Rajakumar, P. D., Young, R. E. B. & Purton, S. The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas. Appl. Microbiol. Biotechnol. 104, 675–686 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Murbach, T. S. et al. A toxicological evaluation of Chlamydomonas reinhardtii, a Green Algae. Int. J. Toxicol. 37, 53–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Economou, C., Wannathong, T., Szaub, J., Purton, S. Chloroplast Biotechnol. (2014). https://doi.org/10.1007/978-1-62703-995-6_27.

  • Taunt, H. N., Stoffels, L. & Purton, S. Green biologics: The algal chloroplast as a platform for making biopharmaceuticals. Bioengineered 9, 48–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Bateman, J. M. & Purton, S. Tools for chloroplast transformation in Chlamydomonas: Expression vectors and a new dominant selectable marker. Mol. Gen. Genet. 263, 404–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Jackson, H. O., Taunt, H. N., Mordaka, P. M., Smith, A. G. & Purton, S. The algal chloroplast as a testbed for synthetic biology designs aimed at radically rewiring plant metabolism. Front. Plant Sci. 12, 1–15 (2021).

    Article  Google Scholar 

  • Moog, D. et al. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microb. Cell Fact. 18, 1–15 (2019).

    Article  Google Scholar 

  • Kim, J. W. et al. Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae. Microb. Cell Fact. 19, 1–9 (2020).

    Article  Google Scholar 

  • Tran, M., Zhou, B., Pettersson, P. L., Gonzalez, M. J. & Mayfield, S. P. Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol. Bioeng. 104, 663–673 (2009).

    CAS  PubMed  Google Scholar 

  • Seo, H. et al. Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli. Biochem. Biophys. Res. Commun. 508, 250–255 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Bally, J. et al. Both the stroma and thylakoid lumen of tobacco chloroplasts are competent for the formation of disulphide bonds in recombinant proteins. Plant Biotechnol. J. 6, 46–61 (2008).

    CAS  PubMed  Google Scholar 

  • Wannathong, T., Waterhouse, J. C., Young, R. E. B., Economou, C. K. & Purton, S. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl. Microbiol. Biotechnol. 100, 5467–5477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin, J. A. et al. The synthetic biology open language (SBOL) Version 3: Simplified data exchange for bioengineering. Front. Bioeng. Biotechnol. 8, 1–15 (2020).

    Article  Google Scholar 

  • Lau, K. W. & Ren, J. W. M. Redox modulation of chloroplast DNA replication in Chlamydomonas reinhardtii. Antioxid Redox Signal https://doi.org/10.1089/15230860050192305 (2000).

    Article  PubMed  Google Scholar 

  • Di Lauro, M. et al. Liquid-gated organic electronic devices based on high-performance solution-processed molecular semiconductor. Adv. Electron. Mater. 3, 1700159 (2017).

    Article  Google Scholar 

  • Lu, H. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Rosano, G. L., Morales, E. S. & Ceccarelli, E. A. New tools for recombinant protein production in Escherichia coli: A 5-year update. Protein Sci. 28, 1412–1422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, L. et al. Catalytically inactive lytic polysaccharide monooxygenase PcAA14A enhances the enzyme-mediated hydrolysis of polyethylene terephthalate. Int. J. Biol. Macromol. 190, 456–462 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Deng, Y. et al. Microalgae for nutrient recycling from food waste to aquaculture as feed substitute: A promising pathway to eco-friendly development. J. Chem. Technol. Biotechnol. 96, 2496–2508 (2021).

    Article  CAS  Google Scholar 

  • Fabris, M. et al. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front. Plant Sci. 11, (2020).

  • Parray, Z. A. et al. Interaction of polyethylene glycol with cytochrome c investigated via in vitro and in silico approaches. Sci. Rep. 11, 1–16 (2021).

    Article  Google Scholar 

  • Krasnikov, B. F. et al. Synthetic and natural polyanions induce cytochrome c release from mitochondria in vitro and in situ. Am. J. Physiol. Cell Physiol. 300, 1193–1203 (2011).

    Article  Google Scholar 

  • Ranieri, A. et al. Immobilized cytochrome c bound to cardiolipin exhibits peculiar oxidation state-dependent axial heme ligation and catalytically reduces dioxygen. J. Biol. Inorg. Chem. 20, 531–540 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Di Rocco, G. et al. The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coord. Chem. Rev. 445, 214071 (2021).

    Article  Google Scholar 

  • Ranieri, A. et al. Electrocatalytic properties of immobilized heme proteins: Basic principles and applications. ChemElectroChem 6, 5172–5185 (2019).

    Article  CAS  Google Scholar 

  • Lancellotti, L. et al. Adsorbing surface strongly influences the pseudoperoxidase and nitrite reductase activity of electrode-bound yeast cytochrome c. The effect of hydrophobic immobilization. Bioelectrochemistry 136, 107628 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Lancellotti, L. et al. Urea-induced denaturation of immobilized yeast iso-1 cytochrome c: Role of Met80 and Tyr67 in the thermodynamics of unfolding and promotion of pseudoperoxidase and nitrite reductase activities. Electrochim. Acta 363, 137237 (2020).

    Article  CAS  Google Scholar 

  • Davies, D. R. & Plaskitt, A. Genetical and structural analyses of cell-wall formation in Chlamydomonas reinhardi. Genet. Res. 17, 33–43 (1971).

    Article  Google Scholar 

  • Green, M. R., Sambrook, J. Molecular Cloning: A Laboratory Manualk. (2013).

  • Young, R. E. B. & Purton, S. Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: A strategy for the isolation of nuclear mutations that affect chloroplast gene expression. Plant J. 80, 915–925 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindle, K. L., Richards, K. L. & Stern, D. B. Engineering the chloroplast genome: Techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A. 88, 1721–1725 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner, R. & Mergenhagen, D. Mating type determination of Chlamydomonas reinhardtii by PCR. Plant Mol. Biol. Rep. 16, 295–299 (1998).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img