Zephyrnet Logo

Quantification of tumor heterogeneity: from data acquisition to metric generation

Date:

    • Tabassum D.P.
    • Polyak K.

    Tumorigenesis: it takes a village.

    Nat. Rev. Cancer. 2015; 15: 473-483

    • Hiley C.T.
    • Swanton C.

    Spatial and temporal cancer evolution: causes and consequences of tumour diversity.

    Clin. Med. 2014; 14: s33-s37

    • Hiley C.
    • et al.

    Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine.

    Genome Biol. 2014; 15: 453

  • Spatial heterogeneity in the tumor microenvironment.

    Cold Spring Harb. Perspect. Med. 2016; 6a026583

    • Bedard P.L.
    • et al.

    Tumour heterogeneity in the clinic.

    Nature. 2013; 501: 355-364

    • McGranahan N.
    • Swanton C.

    Biological and therapeutic impact of intratumor heterogeneity in cancer evolution.

    Cancer Cell. 2015; 27: 15-26

    • Rybinski B.
    • Yun K.

    Addressing intra-tumoral heterogeneity and therapy resistance.

    Oncotarget. 2016; 7: 72322-72342

    • Leelatian N.
    • et al.

    Preparing viable single cells from human tissue and tumors for cytomic analysis.

    Curr. Protoc. Mol. Biol. 2017; 118: 25C.1.1-25C.1.23

    • Padula M.P.
    • et al.

    A comprehensive guide for performing sample preparation and top-down protein analysis.

    Proteomes. 2017; 5: 1-31

    • Capriotti A.L.
    • et al.

    Recent applications of magnetic solid-phase extraction for sample preparation.

    Chromatographia. 2019; 82: 1251-1274

    • Hosic S.
    • et al.

    Microfluidic sample preparation for single cell analysis.

    Anal. Chem. 2016; 88: 354-380

    • Heather J.M.
    • Chain B.

    The sequence of sequencers: the history of sequencing DNA.

    Genomics. 2016; 107: 1-8

    • Amarasinghe S.L.
    • et al.

    Opportunities and challenges in long-read sequencing data analysis.

    Genome Biol. 2020; 21: 30

    • Strom S.P.

    Current practices and guidelines for clinical next-generation sequencing oncology testing.

    Cancer Biol. Med. 2016; 13: 3-11

  • Next-generation sequencing and its clinical application.

    Cancer Biol. Med. 2019; 16: 4-10

    • Timp W.
    • Timp G.

    Beyond mass spectrometry, the next step in proteomics.

    Sci. Adv. 2020; 6: 1-17

    • Duong V.A.
    • et al.

    Review of three-dimensional liquid chromatography platforms for bottom-up proteomics.

    Int. J. Mol. Sci. 2020; 23: 1524

    • Russ IV, C.W.
    • et al.

    Why use signal-to-noise as a measure of MS Performance when it is often meaningless?.

    Curr. Topics Mass Spectrom. 2011; 9: 28-33

    • Stoeckli M.
    • et al.

    Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues.

    Nat. Med. 2001; 7: 493-496

    • Yusko E.C.
    • et al.

    Real-time shape approximation and fingerprinting of single proteins using a nanopore.

    Nat. Nanotechnol. 2017; 12: 360-367

    • Chang Q.
    • Hedley D.

    Emerging applications of flow cytometry in solid tumor biology.

    Methods. 2012; 57: 359-367

    • Grün D.
    • van Oudenaarden A.

    Design and analysis of single-cell sequencing experiments.

    Cell. 2015; 163: 799-810

    • Wyatt Shields IV, C.
    • et al.

    Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation.

    Lab Chip. 2015; 15: 1230-1249

    • Salafi T.
    • et al.

    A review on deterministic lateral displacement for particle separation and detection.

    Nano-Micro Lett. 2019; 11: 77

    • Punjiya M.
    • et al.

    A flow through device for simultaneous dielectrophoretic cell trapping and AC electroporation.

    Sci. Rep. 2019; 9: 1-11

    • Saliba A.E.
    • et al.

    Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays.

    Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 14524-14529

    • Augustsson P.
    • et al.

    Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis.

    Anal. Chem. 2012; 84: 7954-7962

    • Huang K-W.
    • et al.

    Microfluidic integrated optoelectronic tweezers for single-cell preparation and analysis.

    Lab Chip. 2013; 13: 3721-3727

    • Sanchez-Freire V.
    • et al.

    Microfluidic single cell real-time PCR for comparative analysis of gene expression patterns.

    Nat. Protoc. 2012; 7: 829-838

    • Macosko E.Z.
    • et al.

    Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets.

    Cell. 2015; 161: 1202-1214

    • Zheng G.X.Y.
    • et al.

    Massively parallel digital transcriptional profiling of single cells.

    Nat. Commun. 2017; 8: 14049

    • Borgström E.
    • et al.

    Comparison of whole genome amplification techniques for human single cell exome sequencing.

    PLoS ONE. 2017; 12e0171566

    • Lawson D.A.
    • et al.

    Tumour heterogeneity and metastasis at single-cell resolution.

    Nat. Cell Biol. 2018; 20: 1349-1360

    • Stavrakis S.
    • et al.

    High-throughput microfluidic imaging flow cytometry.

    Curr. Opin. Biotechnol. 2019; 55: 36-43

    • Sohrabi S.
    • et al.

    Droplet microfluidics: fundamentals and its advanced applications.

    RSC Adv. 2020; 10: 27560-27574

    • Sarkar S.
    • et al.

    Dynamic analysis of immune and cancer cell interactions at single cell level in microfluidic droplets.

    Biomicrofluidics. 2016; 10: 1-12

    • Bandura D.R.
    • et al.

    Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

    Anal. Chem. 2009; 81: 6813-6822

    • Wagner J.
    • et al.

    A single-cell atlas of the tumor and immune ecosystem of human breast cancer.

    Cell. 2019; 177: 1330-1345

  • Fully cooked FISH.

    Nat. Rev. Genet. 2007; 8: S6

    • Chen K.H.
    • et al.

    Spatially resolved, highly multiplexed RNA profiling in single cells.

    Science. 2015; 348: 1360-1363

    • Geiss G.K.
    • et al.

    Direct multiplexed measurement of gene expression with color-coded probe pairs.

    Nat. Biotechnol. 2008; 26: 317-325

    • Lee J.H.
    • et al.

    Highly multiplexed subcellular RNA sequencing in situ.

    Science. 2014; 343: 1360-1363

    • Payne A.C.
    • et al.

    In situ genome sequencing resolves DNA sequence and structure in intact biological samples.

    Science. 2021; 371eaay3446

    • Rodriques S.G.
    • et al.

    Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution.

    Science. 2019; 363: 1463-1467

    • Saka S.K.
    • et al.

    Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues.

    Nat. Biotechnol. 2019; 37: 1080-1090

    • Schürch C.M.
    • et al.

    Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front.

    Cell. 2020; 182: 1341-1359

    • Giesen C.
    • et al.

    Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry.

    Nat. Methods. 2014; 11: 417-422

    • Angelo M.
    • et al.

    Multiplexed ion beam imaging of human breast tumors.

    Nat. Med. 2014; 20: 436-442

    • Espina V.
    • et al.

    Laser-capture microdissection.

    Nat. Protoc. 2006; 1: 586-603

    • Cheng L.
    • et al.

    Laser-assisted microdissection in translational research.

    Appl. Immunohistochem. Mol. Morphol. 2012; 21: 31-47

    • Datta S.
    • et al.

    Laser capture microdissection: big data from small samples.

    Histol. Histopathol. 2015; 30: 1255-1269

    • Smith E.A.
    • Hodges H.C.

    The spatial and genomic hierarchy of tumor ecosystems revealed by single-cell technologies.

    Trends Cancer. 2019; 5: 411-425

    • Adey N.
    • et al.

    A mill based instrument and software system for dissecting slide-mounted tissue that provides digital guidance and documentation.

    BMC Clin. Pathol. 2013; 13: 1-12

    • Lovchik R.D.
    • et al.

    Micro-immunohistochemistry using a microfluidic probe.

    Lab Chip. 2012; 12: 1040-1043

    • Kashyap A.
    • et al.

    Quantitative microimmunohistochemistry for the grading of immunostains on tumour tissues.

    Nat. Biomed. 2019; 3: 478-490

    • Huber D.
    • Kaigala G.V.

    Rapid micro fluorescence in situ hybridization in tissue sections.

    Biomicrofluidics. 2018; 12042212

    • Voith von Voithenberg L.
    • et al.

    Spatially multiplexed RNA in situ hybridization to reveal tumor heterogeneity.

    Nucleic Acids Res. 2020; 48e17

    • Voith von Voithenberg L.
    • et al.

    Mapping spatial genetic landscapes in tissue sections through microscale integration of sampling methodology into genomic workflows.

    Small. 2021; 17: 2007901

    • van Kooten X.F.
    • et al.

    Spatially resolved genetic analysis of tissue sections enabled by microscale flow confinement retrieval and isotachophoretic purification.

    Angew. Chem. 2019; 58: 15259-15262

    • Kashyap A.
    • et al.

    Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe.

    Sci. Rep. 2016; 6: 1-10

    • Suetens P.

    Fundamentals of Medical Imaging.

    2nd edn. Cambridge University Press, 2009

    • Sgouros G.
    • et al.

    Radiopharmaceutical therapy in cancer: clinical advances and challenges.

    Nat. Rev. Drug Discov. 2020; 19: 589-608

    • Wallyn J.
    • et al.

    Biomedical imaging: principles, technologies, clinical aspects, contrast agents, limitations and future trends in nanomedicines.

    Pharm. Res. 2019; 36: 78

    • Frangioni J.V.

    New technologies for human cancer imaging.

    J. Clin. Oncol. 2008; 26: 4012-4021

    • Yankeelov T.E.
    • et al.

    Quantitative multimodality imaging in cancer research and therapy.

    Nat. Rev. Clin. Oncol. 2014; 11: 670-680

    • Yankeelov T.
    • Gore J.

    Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples.

    Curr. Med. Imaging Rev. 2007; 3: 91-107

    • Tanay A.
    • Regev A.

    Scaling single-cell genomics from phenomenology to mechanism.

    Nature. 2017; 541: 331-338

    • Shi X.
    • et al.

    Unmasking tumor heterogeneity and clonal evolution by single-cell analysis.

    J. Cancer Metastasis Treat. 2018; 4: 47

    • Stuart T.
    • Satija R.

    Integrative single-cell analysis.

    Nat. Rev. Genet. 2019; 20: 257-272

    • Kishi J.Y.
    • et al.

    SABER enables amplified and multiplexed imaging of RNA and DNA in cells and tissues.

    Nat. Methods. 2019; 16: 533-544

    • Frei A.P.
    • et al.

    Highly multiplexed simultaneous detection of RNAs and proteins in single cells.

    Nat. Methods. 2016; 13: 269-275

  • Single-cell metabolomics: analytical and biological perspectives.

    Science. 2013; 342: 1243259

    • Rappez L.
    • et al.

    SpaceM reveals metabolic states of single cells.

    Nat. Methods. 2021; 18: 799-805

    • Jørgensen J.T.
    • Hersom M.

    Clinical and regulatory aspects of companion diagnostic development in oncology.

    Clin. Pharmacol. Ther. 2018; 103: 999-1008

    • Kaminski M.M.
    • et al.

    CRISPR-based diagnostics. Nat.

    Biomed. Eng. 2021; 5: 643-656

    • Ignatiadis M.
    • et al.

    Liquid biopsy enters the clinic — implementation issues and future challenges.

    Nat. Rev. Clin. Oncol. 2021; 18: 297-312

    • Rizzo S.
    • et al.

    Radiomics: the facts and the challenges of image analysis.

    Eur. Radiol. Exp. 2018; 2: 36

    • Beer L.
    • et al.

    Ultrasound-guided targeted biopsies of CT-based radiomic tumour habitats: technical development and initial experience in metastatic ovarian cancer.

    Eur. Radiol. 2021; 31: 3765-3772

    • Jacquemet G.
    • et al.

    The cell biologist’s guide to super-resolution microscopy.

    J. Cell Sci. 2020; 133jcs240713

    • Nerreter T.
    • et al.

    Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T.

    Nat. Commun. 2019; 10: 3137

    • Liu J.T.C.
    • et al.

    Harnessing non-destructive 3D pathology.

    Nat. Biomed. Eng. 2021; 5: 203-218

    • Mroz E.A.
    • Rocco J.W.

    MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma.

    Oral Oncol. 2013; 49: 211-215

    • Mroz E.A.
    • et al.

    High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma.

    Cancer. 2013; 119: 3034-3042

    • Hou Y.
    • et al.

    Prognostic significance of mutant-allele tumor heterogeneity in uterine corpus endometrial carcinoma.

    Ann. Transl. Med. 2020; 8: 339

  • Clinical relevance of mutant-allele tumor heterogeneity and lung adenocarcinoma.

    Ann. Transl. Med. 2019; 7: 432

    • Ma D.
    • et al.

    Clinical and molecular relevance of mutant-allele tumor heterogeneity in breast cancer.

    Breast Cancer Res. Treat. 2017; 162: 39-48

    • Zhang J.
    • et al.

    Gender-related prognostic value and genomic pattern of intra-tumor heterogeneity in colorectal cancer.

    Carcinogenesis. 2017; 38: 837-846

    • Oh B.Y.
    • et al.

    Intratumor heterogeneity inferred from targeted deep sequencing as a prognostic indicator.

    Sci. Rep. 2019; 9: 4542

    • Dentro S.C.
    • et al.

    Principles of reconstructing the subclonal architecture of cancers.

    Cold Spring Harb. Perspect. Med. 2017; 7a026625

    • Beerenwinkel N.
    • et al.

    Cancer evolution: mathematical models and computational inference.

    Syst. Biol. 2015; 64: e1-e25

    • Turajlic S.
    • et al.

    Resolving genetic heterogeneity in cancer.

    Nat. Rev. Genet. 2019; 20: 404-416

    • Andor N.
    • et al.

    EXPANDS: expanding ploidy and allele frequency on nested subpopulations.

    Bioinformatics. 2014; 30: 50-60

    • Deshwar A.G.
    • et al.

    PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors.

    Genome Biol. 2015; 16: 35

    • Carter S.L.
    • et al.

    Absolute quantification of somatic DNA alterations in human cancer.

    Nat. Biotechnol. 2012; 30: 413-421

    • Raynaud F.
    • et al.

    Pan-cancer inference of intra-tumor heterogeneity reveals associations with different forms of genomic instability.

    PLoS Genet. 2018; 14e1007669

    • Schwarz R.F.
    • et al.

    Phylogenetic quantification of intra-tumour heterogeneity.

    PLoS Comput. Biol. 2014; 10e1003535

    • Watkins T.B.K.
    • Schwarz R.F.

    Phylogenetic quantification of intratumor heterogeneity.

    Cold Spring Harb. Perspect. Med. 2018; 8a028316

    • Schwarz R.F.
    • et al.

    Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis.

    PLoS Med. 2015; 12e1001789

    • Aran D.
    • et al.

    Systematic pan-cancer analysis of tumour purity.

    Nat. Commun. 2015; 6: 8971

    • Luo Z.
    • et al.

    Accurity: accurate tumor purity and ploidy inference from tumor-normal WGS data by jointly modelling somatic copy number alterations and heterozygous germline single-nucleotide-variants.

    Bioinformatics. 2018; 34: 2004-2011

    • Prandi D.
    • Demichelis F.

    Ploidy and purity adjusted DNA allele specific analysis using CLONETv2.

    Curr. Protoc. Bioinformatics. 2019; 67e81

    • Noorbakhsh J.
    • et al.

    Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power.

    Sci. Rep. 2018; 8: 11445

    • Abécassis J.
    • et al.

    Assessing reliability of intra-tumor heterogeneity estimates from single sample whole exome sequencing data.

    PLoS ONE. 2019; 14e0224143

    • Miura S.
    • et al.

    Predicting clone genotypes from tumor bulk sequencing of multiple samples.

    Bioinformatics. 2018; 34: 4017-4026

    • Lähnemann D.
    • et al.

    Eleven grand challenges in single-cell data science.

    Genome Biol. 2020; 21: 31

    • Almendro V.
    • et al.

    Cellular heterogeneity and molecular evolution in cancer.

    Annu. Rev. Pathol. 2013; 8: 277-302

    • Park S.Y.
    • et al.

    Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype.

    J. Clin. Invest. 2010; 120: 636-644

    • Almendro V.
    • et al.

    Genetic and phenotypic diversity in breast tumor metastases.

    Cancer Res. 2014; 74: 1338-1348

    • Janiszewska M.
    • et al.

    In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer.

    Nat. Genet. 2015; 47: 1212-1219

    • Chung Y.R.
    • et al.

    Diversity index as a novel prognostic factor in breast cancer.

    Oncotarget. 2017; 8: 97114-97126

    • Kreso A.
    • et al.

    Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer.

    Science. 2013; 339: 543-548

    • Easwaran H.
    • et al.

    Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance.

    Mol. Cell. 2014; 54: 716-727

    • Oakes C.C.
    • et al.

    Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia.

    Cancer Discov. 2014; 4: 348-361

    • Sharma S.V.
    • et al.

    A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations.

    Cell. 2010; 141: 69-80

    • Brock A.
    • et al.

    Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours.

    Nat. Rev. Genet. 2009; 10: 336-342

    • Li M.
    • et al.

    An algorithm to quantify intratumor heterogeneity based on alterations of gene expression profiles.

    Commun. Biol. 2020; 3: 505

    • Park Y.
    • et al.

    Measuring intratumor heterogeneity by network entropy using RNA-seq data.

    Sci. Rep. 2016; 6srep37767

    • Kim M.
    • et al.

    SpliceHetero: an information theoretic approach for measuring spliceomic intratumor heterogeneity from bulk tumor RNA-seq.

    PLoS ONE. 2019; 14e0223520

    • Cheng F.
    • et al.

    Investigating cellular network heterogeneity and modularity in cancer: a network entropy and unbalanced motif approach.

    BMC Syst. Biol. 2016; 10: 65

    • Levitin H.M.
    • et al.

    Single-cell transcriptomic analysis of tumor heterogeneity.

    Trends Cancer. 2018; 4: 264-268

    • Ma L.
    • et al.

    Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer.

    Cancer Cell. 2019; 36: 418-430

    • Faratian D.
    • et al.

    Heterogeneity mapping of protein expression in tumors using quantitative immunofluorescence.

    J. Vis. Exp. 2011; 5e3334

    • Potts S.J.
    • et al.

    Evaluating tumor heterogeneity in immunohistochemistry-stained breast cancer tissue.

    Lab. Investig. 2012; 92: 1342-1357

    • Gerdes M.J.
    • et al.

    Single-cell heterogeneity in ductal carcinoma in situ of breast.

    Mod. Pathol. 2018; 31: 406-417

    • Spagnolo D.M.
    • et al.

    Platform for quantitative evaluation of spatial intratumoral heterogeneity in multiplexed fluorescence images.

    Cancer Res. 2017; 77: e71-e74

    • Spagnolo D.M.
    • et al.

    Pointwise mutual information quantifies intratumor heterogeneity in tissue sections labeled with multiple fluorescent biomarkers.

    J. Pathol. Inform. 2016; 7: 47

    • Graf J.F.
    • Zavodszky M.I.

    Characterizing the heterogeneity of tumor tissues from spatially resolved molecular measures.

    PLoS ONE. 2017; 12e0188878

    • Bendall S.C.
    • Nolan G.P.

    From single cells to deep phenotypes in cancer.

    Nat. Biotechnol. 2012; 30: 639-647

    • Di Palma S.
    • Bodenmiller B.

    Unraveling cell populations in tumors by single-cell mass cytometry.

    Curr. Opin. Biotechnol. 2015; 31: 122-129

    • Jackson H.W.
    • et al.

    The single-cell pathology landscape of breast cancer.

    Nature. 2020; 578: 615-620

    • Rapsomaniki M.A.
    • et al.

    CellCycleTRACER accounts for cell cycle and volume in mass cytometry data.

    Nat. Commun. 2018; 9: 632

    • Heindl A.
    • et al.

    Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology.

    Lab. Investig. 2015; 95: 377-384

    • Setiadi A.F.
    • et al.

    Quantitative, architectural analysis of immune cell subsets in tumor-draining lymph nodes from breast cancer patients and healthy lymph nodes.

    PLoS ONE. 2010; 5e12420

    • Gong C.
    • et al.

    Quantitative characterization of cd8+ t cell clustering and spatial heterogeneity in solid tumors.

    Front. Oncol. 2019; 8: 649

  • Modelling the spatial heterogeneity and molecular correlates of lymphocytic infiltration in triple-negative breast cancer.

    J. R. Soc. Interface. 2015; 12: 20141153

    • Nawaz S.
    • et al.

    Beyond immune density: critical role of spatial heterogeneity in estrogen receptor-negative breast cancer.

    Mod. Pathol. 2015; 28: 766-777

    • Khan A.M.
    • Yuan Y.

    Biopsy variability of lymphocytic infiltration in breast cancer subtypes and the ImmunoSkew score.

    Sci. Rep. 2016; 6: 36231

    • Keren L.
    • et al.

    A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging.

    Cell. 2018; 174: 1373-1387

    • Vickman R.E.
    • et al.

    Deconstructing tumor heterogeneity: the stromal perspective.

    Oncotarget. 2020; 11: 3621-3632

    • Yun G.
    • et al.

    Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: association with survival outcomes after curative resection.

    Sci. Rep. 2018; 8: 7226

    • Yip C.
    • et al.

    Primary esophageal cancer: heterogeneity as potential prognostic biomarker in patients treated with definitive chemotherapy and radiation therapy.

    Radiology. 2014; 270: 141-148

    • Ng F.
    • et al.

    Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival.

    Radiology. 2013; 266: 177-184

    • Chakraborty J.
    • et al.

    Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients.

    PLoS ONE. 2017; 12e0188022

    • Yoon S.H.
    • et al.

    Tumor heterogeneity in human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer assessed by CT texture analysis: association with survival after trastuzumab treatment.

    PLoS ONE. 2016; 11e0161278

    • Watanabe H.
    • et al.

    Quantification of structural heterogeneity using fractal analysis of contrast-enhanced CT image to predict survival in gastric cancer patients.

    Dig. Dis. Sci. 2020; 66: 2069-2074

    • Goh V.
    • et al.

    Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis.

    Eur. Radiol. 2009; 19: 1358-1365

    • Kurata Y.
    • et al.

    Fractal analysis of contrast-enhanced CT images for preoperative prediction of malignant potential of gastrointestinal stromal tumor.

    Abdom. Radiol. 2018; 43: 2659-2664

    • Hayano K.
    • et al.

    Fractal analysis of contrast-enhanced CT images to predict survival of patients with hepatocellular carcinoma treated with sunitinib.

    Dig. Dis. Sci. 2014; 59: 1996-2003

    • Lo Gullo R.
    • et al.

    Combining molecular and imaging metrics in cancer: radiogenomics.

    Insights Imaging. 2020; 11: 1

    • Aerts H.J.W.L.
    • et al.

    Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.

    Nat. Commun. 2014; 5: 4006

    • Segal E.
    • et al.

    Decoding global gene expression programs in liver cancer by noninvasive imaging.

    Nat. Biotechnol. 2007; 25: 675-680

    • Ghosh P.
    • et al.

    Imaging-genomic pipeline for identifying gene mutations using three-dimensional intra-tumor heterogeneity features.

    J. Med. Imaging (Bellingham). 2015; 2041009

  • Understanding the standardized uptake value, its methods, and implications for usage.

    J. Nucl. Med. 2004; 45: 1431-1434

    • Pugachev A.
    • et al.

    Dependence of FDG uptake on tumor microenvironment.

    Int. J. Radiat. Oncol. Biol. Phys. 2005; 62: 545-553

    • Grizzi F.
    • et al.

    The complexity and fractal geometry of nuclear medicine images.

    Mol. Imaging Biol. 2019; 21: 401-409

    • Keyes J.W.

    SUV: standard uptake or silly useless value?.

    J. Nucl. Med. 1995; 36: 1836-1839

    • El Naqa I.
    • et al.

    Exploring feature-based approaches in PET images for predicting cancer treatment outcomes.

    Pattern Recogn. 2009; 42: 1162-1171

    • Tixier F.
    • et al.

    Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer.

    J. Nucl. Med. 2011; 52: 369-378

    • Ganeshan B.
    • et al.

    Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival.

    Eur. Radiol. 2012; 22: 796-802

    • Castello A.
    • et al.

    Prognostic impact of intratumoral heterogeneity based on fractal geometry analysis in operated NSCLC patients.

    Mol. Imaging Biol. 2019; 21: 965-972

    • Miwa K.
    • et al.

    FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules.

    Eur. J. Radiol. 2014; 83: 715-719

    • Bashir U.
    • et al.

    Investigating the histopathologic correlates of 18F-FDG PET heterogeneity in non-small-cell lung cancer.

    Nucl. Med. Commun. 2018; 39: 1197-1206

    • Kim J-H.
    • et al.

    Breast cancer heterogeneity: MR imaging texture analysis and survival outcomes.

    Radiology. 2016; 282: 665-675

    • Golden D.I.
    • et al.

    Dynamic contrast-enhanced MRI-based biomarkers of therapeutic response in triple-negative breast cancer.

    J. Am. Med. Inform. Assoc. 2013; 20: 1059-1066

    • Braman N.M.
    • et al.

    Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI.

    Breast Cancer Res. 2017; 19: 57

    • Chang R-F.
    • et al.

    Quantification of breast tumor heterogeneity for ER status, HER2 status, and TN molecular subtype evaluation on DCE-MRI.

    Magn. Reson. Imaging. 2016; 34: 809-819

    • Harrison L.C.
    • et al.

    Non-Hodgkin lymphoma response evaluation with MRI texture classification.

    J. Exp. Clin. Cancer Res. 2009; 28: 87

    • Liu Y.
    • et al.

    Relationship between glioblastoma heterogeneity and survival time: an MR imaging texture analysis.

    Am. J. Neuroradiol. 2017; 38: 1695-1701

    • Ren J.
    • et al.

    Tumor heterogeneity in oral and oropharyngeal squamous cell carcinoma assessed by texture analysis of CT and conventional MRI: a potential marker of overall survival.

    Acta Radiol. 2019; 60: 1273-1280

    • Liu S.
    • et al.

    Relationship between necrotic patterns in glioblastoma and patient survival: fractal dimension and lacunarity analyses using magnetic resonance imaging.

    Sci. Rep. 2017; 7: 8302

    • Alic L.
    • et al.

    Heterogeneity in DCE-MRI parametric maps: a biomarker for treatment response?.

    Phys. Med. Biol. 2011; 56: 1601-1616

    • O’Connor J.P.B.
    • et al.

    DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6.

    Br. J. Cancer. 2011; 105: 139-145

    • Prescott J.W.
    • et al.

    Temporal analysis of tumor heterogeneity and volume for cervical cancer treatment outcome prediction: preliminary evaluation.

    J. Digit. Imaging. 2010; 23: 342-357

    • Mahrooghy M.
    • et al.

    Heterogeneity wavelet kinetics from DCE-MRI for classifying gene expression based breast cancer recurrence risk.

    Med. Image Comput. Assist. Interv. 2013; 16: 295-302

    • Brooks F.J.

    On some misconceptions about tumor heterogeneity quantification.

    Eur. J. Nucl. Med. Mol. Imaging. 2013; 40: 1292-1294

    • Davnall F.
    • et al.

    Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?.

    Insights Imaging. 2012; 3: 573-589

    • Zhao B.
    • et al.

    Reproducibility of radiomics for deciphering tumor phenotype with imaging.

    Sci. Rep. 2016; 6: 23428

    • Sharma A.
    • et al.

    Non-genetic intra-tumor heterogeneity is a major predictor of phenotypic heterogeneity and ongoing evolutionary dynamics in lung tumors.

    Cell Rep. 2019; 29: 2164-2174

    • AbdulJabbar K.
    • et al.

    Geospatial immune variability illuminates differential evolution of lung adenocarcinoma.

    Nat. Med. 2020; 26: 1054-1062

    • Pati P.
    • et al.

    Hierarchical graph representations in digital pathology.

    Med. Image Anal. 2021; 75102264

    • Eraslan G.
    • et al.

    Deep learning: new computational modelling techniques for genomics.

    Nat. Rev. Genet. 2019; 20: 389-403

    • Jaume G.
    • et al.

    Quantifying explainers of graph neural networks in computational pathology.

    in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021: 8106-8116

    • Zacharaki E.I.
    • et al.

    MRI-based classification of brain tumor type and grade using SVM-RFE.

    in: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, 2009: 1035-1038

    • Gough A.
    • et al.

    Biologically relevant heterogeneity: metrics and practical insights.

    SLAS Discov. 2017; 22: 213-237

    • Magurran A.E.

    Measuring Biological Diversity.

    John Wiley & Sons, 2013

    • Shannon C.E.

    A mathematical theory of communication.

    Bell Syst. Tech. J. 1948; 27: 379-423

    • Ripley B.D.

    Modelling spatial patterns.

    J. R. Stat. Soc. Ser. B Methodol. 1977; 39: 172-192

    • Bessag J.E.

    Comments on Ripley’s paper.

    J. R. Stat. Soc. Ser. B. 1977; 39: 193-195

    • Schapiro D.
    • et al.

    histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data.

    Nat. Methods. 2017; 14: 873

    • Lubner M.G.
    • et al.

    CT texture analysis: definitions, applications, biologic correlates, and challenges.

    RadioGraphics. 2017; 37: 1483-1503

    • Haralick R.M.
    • et al.

    Textural features for image classification.

    IEEE Trans. Syst. Man. Cybern. 1973; SMC-3: 610-621

    • Haralick R.M.

    Statistical and structural approaches to texture.

    Proc. IEEE. 1979; 67: 786-804

    • Amadasun M.
    • King R.

    Textural features corresponding to textural properties.

    IEEE Trans. Syst. Man. Cybern. 1989; 19: 1264-1274

    • Galloway M.M.

    Texture analysis using gray level run lengths.

    Comput. Graph. Image Process. 1975; 4: 172-179

    • Tsai D-M.
    • Tseng C-F.

    Surface roughness classification for castings.

    Pattern Recogn. 1999; 32: 389-405

    • Zhang D.
    • et al.

    Content-based image retrieval using Gabor texture features.

    in: First IEEE Pacific-Rim Conference on Multimedia. IEEE, 2000: 13-15

    • Mandelbrot B.B.

    Fractals. Form, Chance and Dimension.

    W.H. Freeman, 1977

    • Sarkar N.
    • Chaudhuri B.B.

    An efficient differential box-counting approach to compute fractal dimension of image.

    IEEE Trans. Syst. Man. Cybern. 1994; 24: 115-120

  • Source: https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(21)00267-5?rss=yes

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?