Zephyrnet Logo

Microbial community composition of food waste before anaerobic digestion – Scientific Reports

Date:

  • Kaza, S., Yao, L. C., Bhada-Tata, P. & Van Woerden, F. What a Waste 20: A Global Snapshot of Solid Waste Management to 2050 (World Bank, 2018). https://doi.org/10.1596/978-1-4648-1329-0.

    Book  Google Scholar 

  • Lim, S. L., Lee, L. H. & Wu, T. Y. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis. J. Clean. Prod. 111, 262–278. https://doi.org/10.1016/j.jclepro.2015.08.083 (2016).

    Article  Google Scholar 

  • Pickin, J. et al. 9 NOVEMBER 2018 PREPARED FOR Department of the Environment and Energy PREPARED IN ASSOCIAT ION WITH Disclaimer Report title National Waste Report 2018 Client Department of the Environment and Energy Status Final (2018).

  • Metz, B., Davidson, O., Bosch, P., Dave, R. & Meyer, L. Climate Change 2007—Mitigation of Climate Change (Cambridge University Press, 2007).

    Google Scholar 

  • Wang, K. S., Chiang, K. Y., Lin, S. M., Tsai, C. C. & Sun, C. J. Effects of chlorides on emissions of toxic compounds in waste incineration: Study on partitioning characteristics of heavy metal. Chemosphere 38, 25 (1999).

    Article  Google Scholar 

  • Hickey, M. E. & Ozbay, G. Food waste in the United States: A contributing factor toward environmental instability. Front. Environ. Sci. Eng. China 2, 25 (2014).

    Google Scholar 

  • Tonini, D., Albizzati, P. F. & Astrup, T. F. Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manage. 76, 744–766 (2018).

    Article  Google Scholar 

  • Pain, B. F. & Hepherd, R. Q. Anaerobic Digestion of Farm Waste (1985).

  • Syaichurrozi, I. & Rusdi, R. Kinetics studies impact of initial pH and addition of yeast Saccharomyces cerevisiae on biogas production from tofu wastewater in Indonesia. Int. J. Eng. 29, 25 (2016).

    Google Scholar 

  • Wang, P., Wang, H., Qiu, Y., Ren, L. & Jiang, B. Microbial characteristics in anaerobic digestion process of food waste for methane production—a review. Bioresour. Technol. 248, 29–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, R. et al. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98, 929–935 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Usack, J. G. et al. An evaluation of anaerobic co-digestion implementation on New York State dairy farms using an environmental and economic life-cycle framework. Appl. Energy 211, 28–40 (2018).

    Article  CAS  Google Scholar 

  • Wu, S. et al. Bacterial communities changes during food waste spoilage. Sci. Rep. 8, 25 (2018).

    Google Scholar 

  • Maeda, H. et al. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol. Med. Microbiol. 39, 81–86 (2003).

  • Bokulich, N. A. & Mills, D. A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl. Environ. Microbiol. 79, 2519–2526 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • De Beeck, M., Lievens, B., Busschaert, P., Declerck, S. & Vangronsveld, J. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One 9, 97629 (2014).

    Article  ADS  Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Unite, C. UNITE QIIME release for Fungi. UNITE https://doi.org/10.15156/BIO/786334 (2019).

    Article  Google Scholar 

  • QIIME 2 community. Training feature classifiers with q2-feature-classifier—QIIME 2 2021.2.0 documentation. https://docs.qiime2.org/2021.2/tutorials/feature-classifier/ (2021).

  • Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ea. Operating instructions vario MACRO cube CHNOS Elemental Analyzer, 47–50 (2017).

  • Margalef, R. Information theory in Ecology. J. Gener. Syst. http://www.sciepub.com/reference/72223 (1958).

  • Allaby, M. A Dictionary of Ecology (Oxford University Press, 2010). https://doi.org/10.1093/acref/9780199567669.001.0001.

    Book  Google Scholar 

  • Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585. https://doi.org/10.1128/AEM.01996-06 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, G., Chen, Y. & Ndegwa, P. Association between methane yield and microbiota abundance in the anaerobic digestion process: A meta-regression. Renew. Sustain. Energy Rev. 135, 110212 (2021).

    Article  CAS  Google Scholar 

  • Dottorini, G. et al. Mass-immigration determines the assembly of activated sludge microbial communities. Proc. Natl. Acad. Sci. USA 118, 25 (2021).

    Article  Google Scholar 

  • Fisgativa, H., Tremier, A., Saoudi, M., Le Roux, S. & Dabert, P. Biochemical and microbial changes reveal how aerobic pre-treatment impacts anaerobic biodegradability of food waste. Waste Manage. 80, 119–129 (2018).

    Article  CAS  Google Scholar 

  • Daly, S. E. et al. Systematic analysis of factors that affect food-waste storage: Toward maximizing lactate accumulation for resource recovery. ACS Sustain. Chem. Eng. 8, 13934–13944 (2020).

    Article  CAS  Google Scholar 

  • Regueiro, L. et al. Comparing the inhibitory thresholds of dairy manure co-digesters after prolonged acclimation periods: Part 2-correlations between microbiomes and environment. Water Res. 87, 458–466 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Fisgativa, H., Tremier, A. & Dabert, P. Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Manage. 50, 264–274 (2016).

    Article  CAS  Google Scholar 

  • Krogerus, K., Preiss, R. & Gibson, B. A unique Saccharomyces cerevisiae × Saccharomyces uvarum hybrid isolated from norwegian farmhouse beer: Characterization and reconstruction. Front. Microbiol. 10, 2253 (2018).

    Article  Google Scholar 

  • Zhang, G., Sun, Y., Sadiq, F. A., Sakandar, H. A. & He, G. Evaluation of the effect of Saccharomyces cerevisiae on fermentation characteristics and volatile compounds of sourdough. J. Food Sci. Technol. 55, 2079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Criado, M. V., Fernández Pinto, V. E., Badessari, A. & Cabral, D. Conditions that regulate the growth of moulds inoculated into bottled mineral water. Int. J. Food Microbiol. 99, 343–349 (2005).

    Article  PubMed  Google Scholar 

  • Black, B. A., Zannini, E., Curtis, J. M. & Gänzle, M. G. Antifungal hydroxy fatty acids produced during sourdough fermentation: Microbial and enzymatic pathways, and antifungal activity in bread. Appl. Environ. Microbiol. 79, 1866 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleerebezem, M. et al. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiol. Rev. 44, 804–820. https://doi.org/10.1093/femsre/fuaa033 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Laughton, J. M., Devillard, E., Heinrichs, D. E., Reid, G. & McCormick, J. K. Inhibition of expression of a staphylococcal superantigen-like protein by a soluble factor from Lactobacillus reuteri. Microbiology 152, 1155–1167 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Barragán, A. & West, S. A. The cost and benefit of quorum sensing-controlled bacteriocin production in Lactobacillus plantarum. J. Evol. Biol. 33, 101–111 (2020).

    Article  PubMed  Google Scholar 

  • Amapu, T., Ameh, J., Ado, S., Abdullahi, I. & Dapiya, H. Amylolytic Potential of lactic acid bacteria isolated from wet milled cereals, cassava flour and fruits. Brit. Microbiol. Res. J. 13, 25 (2016).

    Article  Google Scholar 

  • Burgess-Cassler, A. & Imam, S. Partial purification and comparative characterization of α-amylase secreted by Lactobacillus amylovorus. Curr. Microbiol. 23, 25 (1991).

    Article  Google Scholar 

  • Corsetti, A. et al. Combined effect of sourdough lactic acid bacteria and additives bread firmness and staling. J. Agric. Food Chem. 48, 25 (2000).

    Article  Google Scholar 

  • Nakamura, L. K. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int. J. Syst. Bacteriol. 31, 25 (1981).

    Article  Google Scholar 

  • De Angelis, M., Gobbetti, M. & Corsetti, A. Esterase and lipase activities of Lactobacillus sanfranciscensis strains used in sourdough fermentation. Ital. J. Food Sci. 11, 25 (1999).

    Google Scholar 

  • Maroju, P. A., Tata, P., Balapure, A., Ray Dutta, J. & Ganesan, R. Lactobacillus amylovorus derived lipase-mediated silver derivatization over poly(ε-caprolactone) towards antimicrobial coatings. Enzyme Microb. Technol. 150, 25 (2021).

    Article  Google Scholar 

  • Uppada, S. R., Akula, M., Bhattacharya, A. & Dutta, J. R. Immobilized lipase from Lactobacillus plantarum in meat degradation and synthesis of flavor esters. J. Genet. Eng. Biotechnol. 15, 331–334 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng, X. et al. Technological properties of Lactobacillus plantarum strains isolated from chinese traditional low salt fermented whole fish. Food Control 40, 25 (2014).

    Article  CAS  Google Scholar 

  • Johnson, B. R. et al. The S-layer associated serine protease homolog prtX impacts cell surface-mediated microbe-host interactions of Lactobacillus acidophilus NCFM. Front. Microbiol. 8, 25 (2017).

    Article  Google Scholar 

  • Esteban-Torres, M., Reverón, I., Mancheño, J. M., De las Rivas, B. & Muñoz, R. Characterization of a feruloyl esterase from Lactobacillus plantarum. Appl. Environ. Microbiol. 79, 25 (2013).

    Article  Google Scholar 

  • Xu, Z., He, H., Zhang, S., Guo, T. & Kong, J. Characterization of feruloyl esterases produced by the four lactobacillus species: L. amylovorus, L. acidophilus, L. farciminis and L. fermentum, isolated from ensiled corn stover. Front. Microbiol. 8, 15 (2017).

    Article  Google Scholar 

  • Almeida, O. G. G. et al. Does Quorum Sensing play a role in microbial shifts along spontaneous fermentation of cocoa beans? An in silico perspective. Food Res. Int. 131, 109034 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Tang, Y., Li, M. & Yuan, Z. Aeration rate improves the compost quality of food waste and promotes the decomposition of toxic materials in leachate by changing the bacterial community. Bioresour. Technol. 340, 125716 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Nzeteu, C. et al. Resource recovery from the anaerobic digestion of food waste is underpinned by cross-kingdom microbial activities. Bioresou. Technol. Rep. 16, 100847 (2021).

    CAS  Google Scholar 

  • Sethi, S., Datta, A., Gupta, B. L. & Gupta, S. Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnol. 2013, 985685 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim, J. W., Chiam, J. A. & Wang, J.-Y. Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste. Bioresour. Technol. 171, 132–138 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Ruan, D. et al. Enhancing methane production of anaerobic sludge digestion by microaeration: Enzyme activity stimulation, semi-continuous reactor validation and microbial community analysis. Bioresour. Technol. 289, 121643 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Fu, S.-F., Wang, F., Shi, X.-S. & Guo, R.-B. Impacts of microaeration on the anaerobic digestion of corn straw and the microbial community structure. Chem. Eng. J. 287, 523–528 (2016).

    Article  CAS  Google Scholar 

  • Lim, J. W. & Wang, J.-Y. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. Waste Manage. 33, 813–819 (2013).

    Article  CAS  Google Scholar 

  • Nguyen, D. & Khanal, S. K. A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process. Biotechnol. Adv. 36, 1971–1983 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Rafieenia, R. et al. Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Manage. 59, 194–199 (2017).

    Article  CAS  Google Scholar 

  • Xu, S., Selvam, A. & Wong, J. W. C. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste. Waste Manage. 34, 363–369 (2014).

    Article  CAS  Google Scholar 

  • Charles, W., Walker, L. & Cord-Ruwisch, R. Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresour. Technol. 100, 2329–2335 (2009).

    Article  CAS  PubMed  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img