Zephyrnet Logo

Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases – Nature Nanotechnology

Date:

  • Klotter, V. et al. Assessment of pathologic increase in liver stiffness enables earlier diagnosis of CFLD: results from a prospective longitudinal cohort study. PLoS ONE 12, e0178784 (2017).

    Article 

    Google Scholar
     

  • Medrano, L. M. et al. Elevated liver stiffness is linked to increased biomarkers of inflammation and immune activation in HIV/hepatitis C virus-coinfected patients. AIDS 32, 1095–1105 (2018).

    Article 

    Google Scholar
     

  • Tomlin, H. & Piccinini, A. M. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology 155, 186–201 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Martinez-Vidal, L. et al. Causal contributors to tissue stiffness and clinical relevance in urology. Commun. Biol. 4, 1011 (2021).

    Article 

    Google Scholar
     

  • Mohammadi, H. & Sahai, E. Mechanisms and impact of altered tumour mechanics. Nat. Cell Biol. 20, 766–774 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Du, H. et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00761-w (2022).

  • Zhu, C., Chen, W., Lou, J., Rittase, W. & Li, K. Mechanosensing through immunoreceptors. Nat. Immunol. 20, 1269–1278 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Judokusumo, E., Tabdanov, E., Kumari, S., Dustin, M. L. & Kam, L. C. Mechanosensing in T lymphocyte activation. Biophys. J. 102, L5–L7 (2012).

    Article 
    CAS 

    Google Scholar
     

  • O’Connor, R. S. et al. Substrate rigidity regulates human T cell activation and proliferation. J. Immunol. 189, 1330–1339 (2012).

    Article 

    Google Scholar
     

  • Saitakis, M. et al. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 6, e23190 (2017).

    Article 

    Google Scholar
     

  • Blumenthal, D., Chandra, V., Avery, L. & Burkhardt, J. K. Mouse T cell priming is enhanced by maturation-dependent stiffening of the dendritic cell cortex. eLife 9, e55995 (2020). Important work that sheds light on the mechanical aspect of dendritic cell-mediated activation of T cells.

    Article 
    CAS 

    Google Scholar
     

  • Basu, R. et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165, 100–110 (2016). Seminal study that highlights the critical role of mechanical forces in cytotoxic activity of T cells.

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Cell softness prevents cytolytic T-cell killing of tumor-repopulating cells. Cancer Res. 81, 476–488 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tello-Lafoz, M. et al. Cytotoxic lymphocytes target characteristic biophysical vulnerabilities in cancer. Immunity 54, 1037–1054.e7 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lei, K. et al. Cancer-cell stiffening via cholesterol depletion enhances adoptive T-cell immunotherapy. Nat. Biomed. Eng. 5, 1411–1425 (2021). Influential studies (refs. 14,15) that show that stiffening tumour cells through genetic manipulation targeting MRTF or by depleting cholesterol of the cell membrane results in higher vulnerabiliy to T-cell-mediated killing.

    Article 
    CAS 

    Google Scholar
     

  • Provenzano, P. P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

    Article 

    Google Scholar
     

  • Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Massagué, J. TGFβ in cancer. Cell 134, 215–230 (2008).

    Article 

    Google Scholar
     

  • Insua‐Rodríguez, J. et al. Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis. EMBO Mol. Med. 10, e9003 (2018).

    Article 

    Google Scholar
     

  • He, X. et al. Extracellular matrix physical properties govern the diffusion of nanoparticles in tumor microenvironment. Proc. Natl Acad. Sci. USA 120, e2209260120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Salnikov, A. V. et al. Lowering of tumor interstitial fluid pressure specifically augments efficacy of chemotherapy. FASEB J. 17, 1756–1758 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Plodinec, M. et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757–765 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y., McAndrews, K. M. & Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 18, 792–804 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gensbittel, V. et al. Mechanical adaptability of tumor cells in metastasis. Dev. Cell 56, 164–179 (2021). This review presents the hypothesis that tumour cells adjust their mechanical properties throughout their metastatic journey.

    Article 
    CAS 

    Google Scholar
     

  • Lv, J. et al. Cell softness regulates tumorigenicity and stemness of cancer cells. EMBO J. 40, e106123 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Matthews, H. K. et al. Oncogenic signaling alters cell shape and mechanics to facilitate cell division under confinement. Dev. Cell 52, 563–573.e3 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Young, K. M. et al. Correlating mechanical and gene expression data on the single cell level to investigate metastatic phenotypes. iScience 26, 106393 (2023).

    Article 

    Google Scholar
     

  • Rianna, C., Radmacher, M. & Kumar, S. Direct evidence that tumor cells soften when navigating confined spaces. Mol. Biol. Cell 31, 1726–1734 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Regmi, S., Fu, A. & Luo, K. Q. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci. Rep. 7, 39975 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Moose, D. L. et al. Cancer cells resist mechanical destruction in circulation via rhoa/actomyosin-dependent mechano-adaptation. Cell Rep. 30, 3864–3874.e6 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Efficient extravasation of tumor-repopulating cells depends on cell deformability. Sci. Rep. 6, 19304 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Saito, D. et al. Stiffness of primordial germ cells is required for their extravasation in avian embryos. iScience 25, 105629 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol. 20, 966–978 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wen, Z., Zhang, Y., Lin, Z., Shi, K. & Jiu, Y. Cytoskeleton—a crucial key in host cell for coronavirus infection. J. Mol. Cell. Biol. 12, 968–979 (2021).

    Article 

    Google Scholar
     

  • Paluck, A. et al. Role of ARP2/3 complex-driven actin polymerization in RSV infection. Pathogens 11, 26 (2021).

    Article 

    Google Scholar
     

  • Kubánková, M. et al. Physical phenotype of blood cells is altered in COVID-19. Biophys. J. 120, 2838–2847 (2021).

    Article 

    Google Scholar
     

  • Yang, J., Barrila, J., Roland, K. L., Ott, C. M. & Nickerson, C. A. Physiological fluid shear alters the virulence potential of invasive multidrug-resistant non-typhoidal Salmonella typhimurium D23580. npj Microgravity 2, 16021 (2016).

    Article 

    Google Scholar
     

  • Padron, G. C. et al. Shear rate sensitizes bacterial pathogens to H2O2 stress. Proc. Natl Acad. Sci. USA 120, e2216774120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mikaty, G. et al. Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog. 5, e1000314 (2009).

    Article 

    Google Scholar
     

  • Kuo, C. et al. Rhinovirus infection induces extracellular matrix protein deposition in asthmatic and nonasthmatic airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L951–L957 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Nagy, N. et al. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol. 78–79, 292–313 (2019).

    Article 

    Google Scholar
     

  • Fingleton, B. Matrix metalloproteinases as regulators of inflammatory processes. Biochim. Biophys. Acta Mol. Cell Res. 1864, 2036–2042 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Krishnamurty, A. T. & Turley, S. J. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 21, 369–380 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wynn, T. A. Integrating mechanisms of pulmonary fibrosis. J. Exp. Med. 208, 1339–1350 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tschöpe, C. et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat. Rev. Cardiol. 18, 169–193 (2021).

    Article 

    Google Scholar
     

  • Fabre, T. et al. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. Sci. Immunol. 8, eadd8945 (2023).

    Article 
    CAS 

    Google Scholar
     

  • de Boer, R. A. et al. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur. J. Heart Fail. 21, 272–285 (2019).

    Article 

    Google Scholar
     

  • Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Georges, P. C. et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1147–G1154 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Stock, K. F. et al. ARFI-based tissue elasticity quantification in comparison to histology for the diagnosis of renal transplant fibrosis. Clin. Hemorheol. Microcirc. 46, 139–148 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Gadd, V. L. et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 59, 1393–1405 (2014).

    Article 

    Google Scholar
     

  • Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Roman, M. J. et al. Arterial stiffness in chronic inflammatory diseases. Hypertension 46, 194–199 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Klingberg, F., Hinz, B. & White, E. S. The myofibroblast matrix: implications for tissue repair and fibrosis: the myofibroblast matrix. J. Pathol. 229, 298–309 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liu, F. et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L344–L357 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Munger, J. S. et al. A mechanism for regulating pulmonary inflammation and fibrosis: the integrin αvβ6 binds and activates latent TGF β1. Cell 96, 319–328 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Santos, A. & Lagares, D. Matrix stiffness: the conductor of organ fibrosis. Curr. Rheumatol. Rep. 20, 2 (2018).

    Article 

    Google Scholar
     

  • Morvan, M. G. & Lanier, L. L. NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer 16, 7–19 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Janeway, C. A. How the immune system works to protect the host from infection: a personal view. Proc. Natl Acad. Sci. USA 98, 7461–7468 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Dustin, M. L. T-cell activation through immunological synapses and kinapses. Immunol. Rev. 221, 77–89 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Feng, Y., Zhao, X., White, A. K., Garcia, K. C. & Fordyce, P. M. A bead-based method for high-throughput mapping of the sequence- and force-dependence of T cell activation. Nat. Methods 19, 1295–1305 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mordechay, L. et al. Mechanical regulation of the cytotoxic activity of natural killer cells. ACS Biomater. Sci. Eng. 7, 122–132 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lei, K., Kurum, A. & Tang, L. Mechanical immunoengineering of T cells for therapeutic applications. Acc. Chem. Res. 53, 2777–2790 (2020). Comprehensive review on recent advances in mechanical immunoengineering and their potential therapeutic applications.

    Article 
    CAS 

    Google Scholar
     

  • Seghir, R. & Arscott, S. Extended PDMS stiffness range for flexible systems. Sens. Actuators Phys. 230, 33–39 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370 (2020).

    Article 

    Google Scholar
     

  • Denisin, A. K. & Pruitt, B. L. Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl. Mater. Interfaces 8, 21893–21902 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Follain, G. et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat. Rev. Cancer 20, 107–124 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Baratchi, S. et al. Transcatheter aortic valve implantation represents an anti-inflammatory therapy via reduction of shear stress–induced, piezo-1–mediated monocyte activation. Circulation 142, 1092–1105 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Serafini, N. et al. The TRPM4 channel controls monocyte and macrophage, but not neutrophil, function for survival in sepsis. J. Immunol. 189, 3689–3699 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Beningo, K. A. & Wang, Y. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 115, 849–856 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Sosale, N. G. et al. Cell rigidity and shape override CD47’s ‘self’-signaling in phagocytosis by hyperactivating myosin-II. Blood 125, 542–552 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sridharan, R., Cavanagh, B., Cameron, A. R., Kelly, D. J. & O’Brien, F. J. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. 89, 47–59 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hu, Y. et al. Molecular force imaging reveals that integrin-dependent mechanical checkpoint regulates Fcγ-receptor-mediated phagocytosis in macrophages. Nano Lett. 23, 5562–5572 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Atcha, H. et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat. Commun. 12, 3256 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Geng, J. et al. TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection. Nat. Commun. 12, 3519 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Rice, A. J. et al. Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6, e352 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Oliver-De La Cruz, J. et al. Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading. Biomaterials 205, 64–80 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Meli, V. S. et al. YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Sci. Adv. 6, eabb8471 (2020).

  • Steinman, R. M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1–22 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Moreau, H. D. et al. Macropinocytosis overcomes directional bias in dendritic cells due to hydraulic resistance and facilitates space exploration. Dev. Cell 49, 171–188.e5 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Laplaud, V. et al. Pinching the cortex of live cells reveals thickness instabilities caused by myosin II motors. Sci. Adv. 7, eabe3640 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Barbier, L. et al. Myosin II activity is selectively needed for migration in highly confined microenvironments in mature dendritic cells. Front. Immunol. 10, 747 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chabaud, M. et al. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells. Nat. Commun. 6, 7526 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Leithner, A. et al. Dendritic cell actin dynamics control contact duration and priming efficiency at the immunological synapse. J. Cell Biol. 220, e202006081 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J.-H. et al. Biomechanical forces enhance directed migration and activation of bone marrow-derived dendritic cells. Sci. Rep. 11, 12106 (2021).

    Article 
    CAS 

    Google Scholar
     

  • van den Dries, K. et al. Geometry sensing by dendritic cells dictates spatial organization and PGE2-induced dissolution of podosomes. Cell. Mol. Life Sci. 69, 1889–1901 (2012).

    Article 

    Google Scholar
     

  • Chakraborty, M. et al. Mechanical stiffness controls dendritic cell metabolism and function. Cell Rep. 34, 108609 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mennens, S. F. B. et al. Substrate stiffness influences phenotype and function of human antigen-presenting dendritic cells. Sci. Rep. 7, 17511 (2017).

    Article 

    Google Scholar
     

  • Figdor, C. G., van Kooyk, Y. & Adema, G. J. C-type lectin receptors on dendritic cells and langerhans cells. Nat. Rev. Immunol. 2, 77–84 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Bufi, N. et al. Human primary immune cells exhibit distinct mechanical properties that are modified by inflammation. Biophys. J. 108, 2181–2190 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Comrie, W. A., Babich, A. & Burkhardt, J. K. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. J. Cell Biol. 208, 475–491 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Dendritic cell Piezo1 directs the differentiation of TH1 and Treg cells in cancer. eLife 11, e79957 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Valignat, M.-P. et al. Lymphocytes can self-steer passively with wind vane uropods. Nat. Commun. 5, 5213 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Roy, N. H., MacKay, J. L., Robertson, T. F., Hammer, D. A. & Burkhardt, J. K. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci. Signal. 11, eaat3178 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hope, J. M. et al. Fluid shear stress enhances T cell activation through Piezo1. BMC Biol. 20, 61 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Husson, J., Chemin, K., Bohineust, A., Hivroz, C. & Henry, N. Force generation upon T cell receptor engagement. PLoS ONE 6, e19680 (2011). An elegant use of a biomembrane force probe technique for measuring forces exerted by T cells upon engagement with antigen-presenting cells.

    Article 
    CAS 

    Google Scholar
     

  • Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide–MHC triggers T cell signaling. Cell 157, 357–368 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Thauland, T. J., Hu, K. H., Bruce, M. A. & Butte, M. J. Cytoskeletal adaptivity regulates T cell receptor signaling. Sci. Signal. 10, eaah3737 (2017).

    Article 

    Google Scholar
     

  • Gaertner, F. et al. WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues. Dev. Cell 57, 47–62.e9 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Majedi, F. S. et al. T-cell activation is modulated by the 3D mechanical microenvironment. Biomaterials 252, 120058 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. ZAP-70: an essential kinase in T-cell signaling. Cold Spring Harb. Perspect. Biol. 2, a002279 (2010).

    Article 

    Google Scholar
     

  • Bashour, K. T. et al. CD28 and CD3 have complementary roles in T-cell traction forces. Proc. Natl Acad. Sci. USA 111, 2241–2246 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hu, K. H. & Butte, M. J. T cell activation requires force generation. J. Cell Biol. 213, 535–542 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proc. Natl Acad. Sci. USA 113, 5610–5615 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Tabdanov, E. et al. Micropatterning of TCR and LFA-1 ligands reveals complementary effects on cytoskeleton mechanics in T cells. Integr. Biol. 7, 1272–1284 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Govendir, M. A. et al. T cell cytoskeletal forces shape synapse topography for targeted lysis via membrane curvature bias of perforin. Dev. Cell 57, 2237–2247.e8 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. S. et al. Mechanically active integrins target lytic secretion at the immune synapse to facilitate cellular cytotoxicity. Nat. Commun. 13, 3222 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C. S. C. et al. Cutting edge: Piezo1 mechanosensors optimize human T cell activation. J. Immunol. 200, 1255–1260 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jin, W. et al. T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces. Proc. Natl Acad. Sci. USA 116, 19835–19840 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kumari, S. et al. Cytoskeletal tension actively sustains the migratory T‐cell synaptic contact. EMBO J. 39, e102783 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huby, R. D. J., Weiss, A. & Ley, S. C. Nocodazole inhibits signal transduction by the T cell antigen receptor. J. Biol. Chem. 273, 12024–12031 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Le Saux, G. et al. Nanoscale mechanosensing of natural killer cells is revealed by antigen-functionalized nanowires. Adv. Mater. 31, 1805954 (2019).

    Article 

    Google Scholar
     

  • Bhingardive, V. et al. Nanowire based mechanostimulating platform for tunable activation of natural killer cells. Adv. Funct. Mater. 31, 2103063 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brumbaugh, K. M. et al. Functional role for Syk tyrosine kinase in natural killer cell-mediated natural cytotoxicity. J. Exp. Med. 186, 1965–1974 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Matalon, O. et al. Actin retrograde flow controls natural killer cell response by regulating the conformation state of SHP‐1. EMBO J. 37, e96264 (2018).

    Article 

    Google Scholar
     

  • Garrity, D., Call, M. E., Feng, J. & Wucherpfennig, K. W. The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure. Proc. Natl Acad. Sci. USA 102, 7641–7646 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Friedman, D. et al. Natural killer cell immune synapse formation and cytotoxicity are controlled by tension of the target interface. J. Cell Sci. 134, jcs258570 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yanamandra, A. K. et al. PIEZO1-mediated mechanosensing governs NK cell killing efficiency in 3D. Preprint at https://doi.org/10.1101/2023.03.27.534435 (2023).

  • Wan, Z. et al. B cell activation is regulated by the stiffness properties of the substrate presenting the antigens. J. Immunol. 190, 4661–4675 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Natkanski, E. et al. B cells use mechanical energy to discriminate antigen affinities. Science 340, 1587–1590 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Merino-Cortés, S. V. et al. Diacylglycerol kinase ζ promotes actin cytoskeleton remodeling and mechanical forces at the B cell immune synapse. Sci. Signal. 13, eaaw8214 (2020).

    Article 

    Google Scholar
     

  • Zeng, Y. et al. Substrate stiffness regulates B-cell activation, proliferation, class switch, and T-cell-independent antibody responses in vivo: Cellular immune response. Eur. J. Immunol. 45, 1621–1634 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nowosad, C. R., Spillane, K. M. & Tolar, P. Germinal center B cells recognize antigen through a specialized immune synapse architecture. Nat. Immunol. 17, 870–877 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, H. & Wang, S. Immune cells use active tugging forces to distinguish affinity and accelerate evolution. Proc. Natl Acad. Sci. USA 120, e2213067120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Stanton, R. J. et al. HCMV pUL135 remodels the actin cytoskeleton to impair immune recognition of infected cells. Cell Host Microbe 16, 201–214 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pai, R. K., Convery, M., Hamilton, T. A., Boom, W. H. & Harding, C. V. Inhibition of IFN-γ-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion. J. Immunol. 171, 175–184 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Samassa, F. et al. Shigella impairs human T lymphocyte responsiveness by hijacking actin cytoskeleton dynamics and T cell receptor vesicular trafficking. Cell. Microbiol. 22, e13166 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hanč, P. et al. Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens. Immunity 42, 839–849 (2015).

    Article 

    Google Scholar
     

  • Man, S. M. et al. Actin polymerization as a key innate immune effector mechanism to control Salmonella infection. Proc. Natl Acad. Sci. USA 111, 17588–17593 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Jacobson, E. C. et al. Migration through a small pore disrupts inactive chromatin organization in neutrophil-like cells. BMC Biol. 16, 142 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Solis, A. G. et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69–74 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Robledo-Avila, F. H., Ruiz-Rosado, J., de, D., Brockman, K. L. & Partida-Sánchez, S. The TRPM2 ion channel regulates inflammatory functions of neutrophils during Listeria monocytogenes infection. Front. Immunol. 11, 97 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meng, K. P., Majedi, F. S., Thauland, T. J. & Butte, M. J. Mechanosensing through YAP controls T cell activation and metabolism. J. Exp. Med. 217, e20200053 (2020). This study sheds light on T cells sensing the mechanical signals of their environment and tuning their response accordingly.

    Article 

    Google Scholar
     

  • Al-Aghbar, M. A., Jainarayanan, A. K., Dustin, M. L. & Roffler, S. R. The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Commun. Biol. 5, 40 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wong, V. W. et al. Mechanical force prolongs acute inflammation via T‐cell‐dependent pathways during scar formation. FASEB J. 25, 4498–4510 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article 

    Google Scholar
     

  • O’Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151–167 (2019).

    Article 

    Google Scholar
     

  • Dustin, M. L. & Long, E. O. Cytotoxic immunological synapses: NK and CTL synapses. Immunol. Rev. 235, 24–34 (2010).

    Article 
    CAS 

    Google Scholar
     

  • González-Granado, J. M. et al. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci. Signal. 7, ra37 (2014).

    Article 

    Google Scholar
     

  • González, C. et al. Nanobody-CD16 catch bond reveals NK cell mechanosensitivity. Biophys. J. 116, 1516–1526 (2019).

    Article 

    Google Scholar
     

  • Fan, J. et al. NKG2D discriminates diverse ligands through selectively mechano‐regulated ligand conformational changes. EMBO J. 41, e107739 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tsopoulidis, N. et al. T cell receptor–triggered nuclear actin network formation drives CD4+ T cell effector functions. Sci. Immunol. 4, eaav1987 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tamzalit, F. et al. Interfacial actin protrusions mechanically enhance killing by cytotoxic T cells. Sci. Immunol. 4, eaav5445 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sanchez, E. E. et al. Apoptotic contraction drives target cell release by cytotoxic T cells. Nat. Immunol. https://doi.org/10.1038/s41590-023-01572-4 (2023).

  • Händel, C. et al. Cell membrane softening in human breast and cervical cancer cells. N. J. Phys. 17, 083008 (2015).

    Article 

    Google Scholar
     

  • Huang, B., Song, B. & Xu, C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat. Metab. 2, 132–141 (2020).

    Article 

    Google Scholar
     

  • Hanna, R. N. et al. Patrolling monocytes control tumor metastasis to the lung. Science 350, 985–990 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Vyas, M. et al. Natural killer cells suppress cancer metastasis by eliminating circulating cancer cells. Front. Immunol. 13, 1098445 (2023).

    Article 

    Google Scholar
     

  • Hu, B., Xin, Y., Hu, G., Li, K. & Tan, Y. Fluid shear stress enhances natural killer cell’s cytotoxicity toward circulating tumor cells through NKG2D-mediated mechanosensing. APL Bioeng. 7, 036108 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Boussommier-Calleja, A. et al. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials 198, 180–193 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Soderquest, K. et al. Monocytes control natural killer cell differentiation to effector phenotypes. Blood 117, 4511–4518 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization, and function throughout life. Immunity 48, 202–213 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Surcel, A. et al. Pharmacological activation of myosin II paralogs to correct cell mechanics defects. Proc. Natl Acad. Sci. USA 112, 1428–1433 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mittelheisser, V. et al. Optimal physicochemical properties of antibody–nanoparticle conjugates for improved tumor targeting. Adv. Mater. 34, 2110305 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guo, P. et al. Nanoparticle elasticity directs tumor uptake. Nat. Commun. 9, 130 (2018).

    Article 

    Google Scholar
     

  • Liang, Q. et al. The softness of tumour-cell-derived microparticles regulates their drug-delivery efficiency. Nat. Biomed. Eng. 3, 729–740 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Nanoparticle-mediated specific elimination of soft cancer stem cells by targeting low cell stiffness. Acta Biomater. 135, 493–505 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Perez, J. E. et al. Transient cell stiffening triggered by magnetic nanoparticle exposure. J. Nanobiotechnol. 19, 117 (2021).

    CAS 

    Google Scholar
     

  • Liu, Y. X. et al. Single-cell mechanics provides an effective means to probe in vivo interactions between alveolar macrophages and silver nanoparticles. J. Phys. Chem. B 119, 15118–15129 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hartmann, N. et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer. Clin. Cancer Res. 20, 3422–3433 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kuczek, D. E. et al. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer 7, 68 (2019).

    Article 

    Google Scholar
     

  • Sun, X. et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature 599, 673–678 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Di Martino, J. S. et al. A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. Nat. Cancer 3, 90–107 (2021).

    Article 

    Google Scholar
     

  • Lampi, M. C. & Reinhart-King, C. A. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci. Transl. Med. 10, eaao0475 (2018).

    Article 

    Google Scholar
     

  • Diop-Frimpong, B., Chauhan, V. P., Krane, S., Boucher, Y. & Jain, R. K. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl Acad. Sci. USA 108, 2909–2914 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc. Natl Acad. Sci. USA 109, 16618–16623 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Van Cutsem, E. et al. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38, 3185–3194 (2020).

    Article 

    Google Scholar
     

  • Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Y. et al. Tumor microenvironment‐activatable nanoenzymes for mechanical remodeling of extracellular matrix and enhanced tumor chemotherapy. Adv. Funct. Mater. 31, 2007544 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Meng, D. et al. In situ activated NK cell as bio‐orthogonal targeted live‐cell nanocarrier augmented solid tumor immunotherapy. Adv. Funct. Mater. 32, 2202603 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Bioorthogonal equipping CAR-T cells with hyaluronidase and checkpoint blocking antibody for enhanced solid tumor immunotherapy. ACS Cent. Sci. 8, 603–614 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Saatci, O. et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nat. Commun. 11, 2416 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nicolas-Boluda, A. et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. eLife 10, e58688 (2021).

    Article 
    CAS 

    Google Scholar
     

  • De Vita, A. et al. Lysyl oxidase engineered lipid nanovesicles for the treatment of triple negative breast cancer. Sci. Rep. 11, 5107 (2021).

    Article 

    Google Scholar
     

  • Kim, H. Y. et al. Detection of lysyl oxidase activity in tumor extracellular matrix using peptide-functionalized gold nanoprobes. Cancers 13, 4523 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kanapathipillai, M. et al. Inhibition of mammary tumor growth using lysyl oxidase-targeting nanoparticles to modify extracellular matrix. Nano Lett. 12, 3213–3217 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Vennin, C. et al. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci. Transl. Med. 9, eaai8504 (2017). A compelling demonstration that altering the mechanical features of the tumour environment holds great potential for improving therapies.

    Article 

    Google Scholar
     

  • Murphy, K. J. et al. Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Sci. Adv. 7, eabh0363 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tran, E. et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210, 1125–1135 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L.-C. S. et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2, 154–166 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Correia, A. L. et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature 594, 566–571 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Roberts, E. W. et al. Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 210, 1137–1151 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Fujimori, K., Covell, D. G., Fletcher, J. E. & Weinstein, J. N. Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab’)2, and Fab in tumors. Cancer Res. 49, 5656–5663 (1989).

    CAS 

    Google Scholar
     

  • Tabdanov, E. D. et al. Engineering T cells to enhance 3D migration through structurally and mechanically complex tumor microenvironments. Nat. Commun. 12, 2815 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Whitlock, B. Enhancing Cytotoxic T Cell Killing by PTEN Depletion (Weill Cornell Medicine, 2018).

  • Li, R., Ma, C., Cai, H. & Chen, W. The CAR T‐cell mechanoimmunology at a glance. Adv. Sci. 7, 2002628 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chockley, P. J., Ibanez-Vega, J., Krenciute, G., Talbot, L. J. & Gottschalk, S. Synapse-tuned CARs enhance immune cell anti-tumor activity. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01650-2 (2023). This study shows that improving the immunological synapse architecture of CAR-NK cells leads to superior therapeutic efficacy.

  • Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of notch. Dev. Cell 33, 729–736 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sloas, D. C., Tran, J. C., Marzilli, A. M. & Ngo, J. T. Tension-tuned receptors for synthetic mechanotransduction and intercellular force detection. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01638-y (2023).

  • Mittelheisser, V. et al. Leveraging immunotherapy with nanomedicine. Adv. Ther. 3, 2000134 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Perica, K. et al. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 8, 2252–2260 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Majedi, F. S. et al. Augmentation of T-cell activation by oscillatory forces and engineered antigen-presenting cells. Nano Lett. 19, 6945–6954 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vis, B. et al. Ultrasmall silica nanoparticles directly ligate the T cell receptor complex. Proc. Natl Acad. Sci. USA 117, 285–291 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, K.-S. et al. Cationic nanoparticle-mediated activation of natural killer cells for effective cancer immunotherapy. ACS Appl. Mater. Interfaces 12, 56731–56740 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sim, T. et al. Magneto-activation and magnetic resonance imaging of natural killer cells labeled with magnetic nanocomplexes for the treatment of solid tumors. ACS Nano 15, 12780–12793 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nat. Methods 13, 143–146 (2016).

    Article 

    Google Scholar
     

  • Farhadi, A., Ho, G. H., Sawyer, D. P., Bourdeau, R. W. & Shapiro, M. G. Ultrasound imaging of gene expression in mammalian cells. Science 365, 1469–1475 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9, 266–269 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Pan, Y. et al. Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proc. Natl Acad. Sci. USA 115, 992–997 (2018).

    Article 
    CAS 

    Google Scholar
     

  • González-Bermúdez, B., Guinea, G. V. & Plaza, G. R. Advances in micropipette aspiration: applications in cell biomechanics, models, and extended studies. Biophys. J. 116, 587–594 (2019).

    Article 

    Google Scholar
     

  • Otto, O. et al. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat. Methods 12, 199–202 (2015). Introduction of the state-of-the-art and high-throughput RT-DC technology for measuring the mechanical properties of cells.

    Article 
    CAS 

    Google Scholar
     

  • Gerum, R. et al. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry. eLife 11, e78823 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sánchez-Iranzo, H., Bevilacqua, C., Diz-Muñoz, A. & Prevedel, R. A 3D Brillouin microscopy dataset of the in-vivo zebrafish eye. Data Brief. 30, 105427 (2020).

    Article 

    Google Scholar
     

  • Conrad, C., Gray, K. M., Stroka, K. M., Rizvi, I. & Scarcelli, G. Mechanical characterization of 3D ovarian cancer nodules using Brillouin confocal microscopy. Cell. Mol. Bioeng. 12, 215–226 (2019).

    Article 

    Google Scholar
     

  • Wu, P.-H. et al. Particle tracking microrheology of cancer cells in living subjects. Mater. Today 39, 98–109 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Falchuk, K. & Berliner, R. Hydrostatic pressures in peritubular capillaries and tubules in the rat kidney. Am. J. Physiol. 220, 1422–1426 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Petrie, R. J. & Koo, H. Direct measurement of intracellular pressure. Curr. Protoc. Cell Biol. 63, (2014).

  • Harlepp, S., Thalmann, F., Follain, G. & Goetz, J. G. Hemodynamic forces can be accurately measured in vivo with optical tweezers. Mol. Biol. Cell 28, 3252–3260 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mongera, A. et al. Mechanics of the cellular microenvironment as probed by cells in vivo during zebrafish presomitic mesoderm differentiation. Nat. Mater. 22, 135–143 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Vorselen, D. et al. Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell–target interactions. Nat. Commun. 11, 20 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meng, F., Suchyna, T. M. & Sachs, F. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ: mechanical stress sensor. FEBS J. 275, 3072–3087 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Conway, D. E. et al. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr. Biol. 23, 1024–1030 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Pan, X. et al. Assessment of cancer cell migration using a viscosity-sensitive fluorescent probe. Chem. Commun. 58, 4663–4666 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shimolina, L. E. et al. Imaging tumor microscopic viscosity in vivo using molecular rotors. Sci. Rep. 7, 41097 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sack, I. Magnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic imaging. Nat. Rev. Phys. 5, 25–42 (2022).

    Article 

    Google Scholar
     

  • Soteriou, D. et al. Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01015-3 (2023).

  • spot_img

    Latest Intelligence

    spot_img