Connect with us

AI

Create a serverless pipeline to translate large documents with Amazon Translate

Published

on

In our previous post, we described how to translate documents using the real-time translation API from Amazon Translate and AWS Lambda. However, this method may not work for files that are too large. They may take time too much time, triggering the 15-minute timeout limit of Lambda functions. One can use batch API, but this is available only in seven AWS Regions (as of this blog’s publication). To enable translation of large files in regions where Batch Translation is not supported, we created the following solution.

In this post, we walk you through performing translation of large documents.

Architecture overview

Compared to the architecture featured in the post Translating documents with Amazon Translate, AWS Lambda, and the new Batch Translate API, our architecture has one key difference: the presence of AWS Step Functions, a serverless function orchestrator that makes it easy to sequence Lambda functions and multiple services into business-critical applications. Step Functions allows us to keep track of running the translation, managing retrials in case of errors or timeouts, and orchestrating event-driven workflows.

The following diagram illustrates our solution architecture.

This event-driven architecture shows the flow of actions when a new document lands in the input Amazon Simple Storage Service (Amazon S3) bucket. This event triggers the first Lambda function, which acts as the starting point of the Step Functions workflow.

The following diagram illustrates the state machine and the flow of actions.

The Process Document Lambda function is triggered when the state machine starts; this function performs all the activities required to translate the documents. It accesses the file from the S3 bucket, downloads it locally in the environment in which the function is run, reads the file contents, extracts short segments from the document that can be passed through the real-time translation API, and uses the API’s output to create the translated document.

Other mechanisms are implemented within the code to avoid failures, such as handling an Amazon Translate throttling error and Lambda function timeout by taking action and storing the progress that was made in a /temp folder 30 seconds before the function times out. These mechanisms are critical for handling large text documents.

When the function has successfully finished processing, it uploads the translated text document in the output S3 bucket inside a folder for the target language code, such as en for English. The Step Functions workflow ends when the Lambda function moves the input file from the /drop folder to the /processed folder within the input S3 bucket.

We now have all the pieces in place to try this in action.

Deploy the solution using AWS CloudFormation

You can deploy this solution in your AWS account by launching the provided AWS CloudFormation stack. The CloudFormation template provisions the necessary resources needed for the solution. The template creates the stack the us-east-1 Region, but you can use the template to create your stack in any Region where Amazon Translate is available. As of this writing, Amazon Translate is available in 16 commercial Regions and AWS GovCloud (US-West). For the latest list of Regions, see the AWS Regional Services List.

To deploy the application, complete the following steps:

  1. Launch the CloudFormation template by choosing Launch Stack:

  1. Choose Next.

Alternatively, on the AWS CloudFormation console, choose Create stack with new resources (standard), choose Amazon S3 URL as the template source, enter https://s3.amazonaws.com/aws-ml-blog/artifacts/create-a-serverless-pipeline-to-translate-large-docs-amazon-translate/translate.yml, and choose Next.

  1. For Stack name, enter a unique stack name for this account; for example, serverless-document-translation.
  2. For InputBucketName, enter a unique name for the S3 bucket the stack creates; for example, serverless-translation-input-bucket.

The documents are uploaded to this bucket before they are translated. Use only lower-case characters and no spaces when you provide the name of the input S3 bucket. This operation creates a new bucket, so don’t use the name of an existing bucket. For more information, see Bucket naming rules.

  1. For OutputBucketName, enter a unique name for your output S3 bucket; for example, serverless-translation-output-bucket.

This bucket stores the documents after they are translated. Follow the same naming rules as your input bucket.

  1. For SourceLanguageCode, enter the language code that your input documents are in; for this post we enter auto to detect the dominant language.
  2. For TargetLanguageCode, enter the language code that you want your translated documents in; for example, en for English.

For more information about supported language codes, see Supported Languages and Language Codes.

  1. Choose Next.

  1. On the Configure stack options page, set any additional parameters for the stack, including tags.
  2. Choose Next.
  3. Select I acknowledge that AWS CloudFormation might create IAM resources with custom names.
  4. Choose Create stack.

Stack creation takes about a minute to complete.

Translate your documents

You can now upload a text document that you want to translate into the input S3 bucket, under the drop/ folder.

The following screenshot shows our sample document, which contains a sentence in Greek.

This action starts the workflow, and the translated document automatically shows up in the output S3 bucket, in the folder for the target language (for this example, en). The length of time for the file to appear depends on the size of the input document.

Our translated file looks like the following screenshot.

You can also track the state machine’s progress on the Step Functions console, or with the relevant API calls.

Let’s try the solution with a larger file. The test_large.txt file contains content from multiple AWS blog posts and other content written in German (for example, we use all the text from the post AWS DeepLens (Version 2019) kommt nach Deutschland und in weitere Länder).

This file is much bigger than the file in previous test. We upload the file in the drop/ folder of the input bucket.

On the Step Functions console, you can confirm that the pipeline is running by checking the status of the state machine.

On the Graph inspector page, you can get more insights on the status of the state machine at any given point. When you choose a step, the Step output tab shows the completion percentage.

When the state machine is complete, you can retrieve the translated file from the output bucket.

The following screenshot shows that our file is translated in English.

Troubleshooting

If you don’t see the translated document in the output S3 bucket, check Amazon CloudWatch Logs for the corresponding Lambda function and look for potential errors. For cost-optimization, by default, the solution uses 256 MB of memory for the Process Document Lambda function. While processing a large document, if you see Runtime.ExitError for the function in the CloudWatch Logs, increase the function memory.

Other considerations

It’s worth highlighting the power of the automatic language detection feature of Amazon Translate, captured as auto in the SourceLanguageCode field that we specified when deploying the CloudFormation stack. In the previous examples, we submitted a file containing text in Greek and another file in German, and they were both successfully translated into English. With our solution, you don’t have to redeploy the stack (or manually change the source language code in the Lambda function) every time you upload a source file with a different language. Amazon Translate detects the source language and starts the translation process. Post deployment, if you need to change the target language code, you can either deploy a new CloudFormation stack or update the existing stack.

This solution uses the Amazon Translate synchronous real-time API. It handles the maximum document size limit (5,000 bytes) by splitting the document into paragraphs (ending with a newline character). If needed, it further splits each paragraph into sentences (ending with a period). You can modify these delimiters based on your source text. This solution can support a maximum of 5,000 bytes for a single sentence and it only handles UTF-8 formatted text documents with .txt or .text file extensions. You can modify the Python code in the Process Document Lambda function to handle different file formats.

In addition to Amazon S3 costs, the solution incurs usage costs from Amazon Translate, Lambda, and Step Functions. For more information, see Amazon Translate pricing, Amazon S3 pricing, AWS Lambda pricing, and AWS Step Functions pricing.

Conclusion

In this post, we showed the implementation of a serverless pipeline that can translate documents in real time using the real-time translation feature of Amazon Translate and the power of Step Functions as orchestrators of individual Lambda functions. This solution allows for more control and for adding sophisticated functionality to your applications. Come build your advanced document translation pipeline with Amazon Translate!

For more information, see the Amazon Translate Developer Guide and Amazon Translate resources. If you’re new to Amazon Translate, try it out using our Free Tier, which offers 2 million characters per month for free for the first 12 months, starting from your first translation request.


About the Authors

Jay Rao is a Senior Solutions Architect at AWS. He enjoys providing technical guidance to customers and helping them design and implement solutions on AWS.

 Seb Kasprzak is a Solutions Architect at AWS. He spends his days at Amazon helping customers solve their complex business problems through use of Amazon technologies.

Nikiforos Botis is a Solutions Architect at AWS. He enjoys helping his customers succeed in their cloud journey, and is particularly interested in AI/ML technologies.

Bobbie Couhbor is a Senior Solutions Architect for Digital Innovation at AWS, helping customers solve challenging problems with emerging technology, such as machine learning, robotics, and IoT.

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://aws.amazon.com/blogs/machine-learning/create-a-serverless-pipeline-to-translate-large-documents-with-amazon-translate/

Artificial Intelligence

Machine Learning vs Deep Learning vs Artificial Intelligence| Know in-depth Difference

Published

on



ML vs Dl Vs AI | Know in-depth Difference – Analytics Vidhya





















Learn everything about Analytics


Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://www.analyticsvidhya.com/blog/2021/06/machine-learning-vs-artificial-intelligence-vs-deep-learning/

Continue Reading

Aerospace

Additive Manufacturing; Perhaps, the Biggest Tectonic Shift Enabling to Industry 4.0

Published

on

3D printing or additive manufacturing is bringing monumental changes to a number of important industries. Companies have begun printing everything from fully functioning cars to Michelin-stared dinners. Medical research institutes have even experimented with printing functioning body parts.

Recently, additive manufacturing showcased its practical versatility. It is becoming a powerful tool in tackling some of the unprecedented challenges posed by the COVID-19. Helping to supply health workers with personal protective equipment and patients with ventilators.

Advanced manufacturing tools like 3D printing—also known as additive manufacturing—are essential for the types of performance-sensitive applications where this optimization is compelling.

3D printing is more cost-competitive at lower production volumes. Because you do not need to reach an economy of scale to offset setup costs. Therefore, it facilitates the mass customization that generative design makes possible. As the cost of 3D printing continues to decrease and the variety of materials increase, 3D printing is becoming practical for small and mid-volume parts for more and more applications.

The Electric Vehicle and the Automotive Industry holds a prominent position in manufacturing with the latest technologies and Innovations. Automotive electrical and electronic systems are becoming more complex. Making the task of designing today’s cars much more difficult. Infotainment, comfort and convenience features, and even safety- and mission-critical systems such as steering and throttle control are accomplished through electrically powered computers, actuators, and sensors.

Additive Manufacturing with the help of Generative design takes system definitions and requirements as input and generates architectural proposals for the logic, software, hardware, and networks of the E/E systems using rules-based automation. These rules capture the knowledge and experience of the veteran engineers to guide younger engineers throughout the design. Capturing this IP helps companies to develop both vehicle architectures and new generations of engineers as they learn and implement existing company knowledge.

It also offers the ability to consolidate parts, so a single complex geometry created by a generative algorithm and 3D printed can often replace assemblies of dozens of separate parts.

Aerospace

Additive Manufacturing

Always on the cutting edge, the aerospace industry was an early adopter of additive manufacturing. Aerospace companies must meet some of the manufacturing industry’s most stringent standards, and parts and components need to be made of the highest-performance materials. Using AM, engineers can design complex, high-strength parts while also reducing the weight of aerospace components by printing more efficient geometries and eliminating significant amounts of unnecessary material. This allows for lower fuel consumption, reduced CO2 emissions, and reduced costs (plus, better airfares).

Consumer Products

Additive manufacturing comes with a plethora of advantages for manufacturing on-demand supplements for consumer-based products. For marketing teams taking a product from concept to completion, often the biggest amount of time is spent on design. To be sure the product is just right, a great deal of time is spent on creating prototypes to prove concepts to stakeholders and ultimately deliver a consumer-pleasing product.

By embracing AM, marketing teams can develop iterations of their product much quicker, and then rapidly pivot to adjust the design as needed. As additive manufacturing continues to advance with build volume and speed, more consumer products may be produced through AM technologies for quick and efficient mass production demands.

Infrastructure

It is not far-fetched to think of living in a house or walking over a bridge that is completely made out of a 3D printer anymore. Soon, this may become reality. In fact, it already is in the Netherlands where the world’s first 3D-printed pedestrian bridge was unveiled in 2018. The structure was created by additive robotics layering molten steel and measures nearly 40 feet across.

Additive manufacturing in the construction market is expanding, ushering in a new era for the industry. According to a study by Transparency Market Research, 3D printing in the infrastructure secretary is predicted to expand at a CAGR of 33 per cent by 2027. Since printed materials can be precisely applied layer by layer when building infrastructure or constructing buildings, AM reduces material waste and allows construction to be as cost-efficient as possible.

Additionally, 3D printing technology allows for complex design structures. Since the materials are printed precisely – reducing the likelihood of infrastructure accidents from construction mistakes and poor design.

While 3D printing is not being employed in everyday bridge building, there is plenty of future potentials as the industry expands. And, with a recent report finding that over a third of all U.S. bridges need major repair work or should be replaced, there may be a rapid expansion of the industry in the near future.

Medical & Pharmaceutical

Additive manufacturing has revolutionized the medical industry, turning what was once science fiction into a new reality. The technology is delivering breakthroughs to doctors, patients, and research institutions. From durable prosthetics and true-to-life anatomical models to surgical grade components, the incredible plethora of objects that have already been successfully printed in the medical field gives a glimpse into the potential that this technology holds for healthcare in the near future.

For example, additive manufacturing allows for 3D printed dental appliances and custom-made devices, such as dentures, crowns, and even Invisalign, to be constructed from a variety of substrates and prints customized to each individual. Currently, the 3D printing market for digital dentistry is valued at $2.5 billion — and is expected to only keep growing. Additionally, additive manufacturing allows for devices such as hearing aids that can be mass-produced made for a better fit to ensure the highest level of comfort for the user.

One of the latest ongoing projects is the use of additive technology by researchers to print human embryonic stem cells. By doing so, these stem cells can then be used to create tissue for testing drugs or growing replacement organs, to print skin that could replace skin that’s been burned or damaged, and to print cancer cells to study and test out new drugs on them. Surgeon Anthony Atala, Director of the Wake Forest Institute for Regenerative Medicine, has even been working on printing organs, believing that printing an organ may soon replace transplanting an organ.

Hence, Additive Manufacturing is leading the industries and manufacturers into an era where the traditional ways of manufacturing would be disrupted, leaving faster, greater, and precise solutions for the manufacturing of future industries and products.

Mayank Vashisht | ELE Times | Technology Journalist

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://www.eletimes.com/additive-manufacturing-perhaps-the-biggest-tectonic-shift-enabling-to-industry-4-0

Continue Reading

AI

Frequent run-ins with Indian government complicates tech giants’ plans

Published

on

Elevate your enterprise data technology and strategy at Transform 2021.


(Reuters) — Another spat between India’s government and U.S. big tech has exacerbated disillusion among firms which have spent billions to build hubs in their largest growth market, to the extent some are rethinking expansion plans, people close to the matter said.

The government on Saturday said Twitter had not indicated compliance with new rules aimed at making social media firms more accountable to legal requests, and therefore risked losing liability exemptions for content posted on its platform.

Twitter joins compatriots Amazon.com, Facebook, and Facebook-owned WhatsApp in long being at loggerheads with the administration of Prime Minister Narendra Modi over data privacy bills and policies some executives have called protectionist, but tension has escalated in recent weeks.

Police visited Twitter last month to notify it of a probe into the tagging of a political tweet as “manipulated media”, and in February interrogated an Amazon official about the potentially adverse social impact of a political drama. Meanwhile, WhatsApp is challenging the government in court over rules it said would force it to access encrypted data.

“The fear is there,” said a senior tech industry executive in India. “It weighs both strategically and operationally.”

There are no indications the increasing run-ins have led to the delay or cancellation of planned investment.

Still, three senior executives familiar with the thinking of major U.S. tech firms said perceptions of India being an alternative, more accessible growth market to China are changing, and that longstanding plans for India’s role in their operations are being reviewed.

“There always used to be these discussions to make India a hub, but that is being thought through now,” said one of the executives, who works at a U.S. tech firm. “This feeling is across the board.”

Four other executives and advisors also expressed concern about rising tension. All declined to be identified due to the sensitivity of the matter and because discussions were private.

Twitter, Amazon, Facebook, WhatsApp and India’s Ministry of Electronics and Information Technology did not respond to requests for comment.

Misinformation

The government has argued that its rules are needed to stem the spread of misinformation that can spark violence – such as in 2017 when kidnapping rumours shared on message apps including WhatsApp led to lynching. It also said the rules are necessary to hold large technology companies accountable for practices that hurt domestic businesses or compromise customer privacy.

India is a massive market for U.S. tech giants. It is the biggest market for both Facebook and WhatsApp by user numbers, showed data from Statista, and third for Twitter. Amazon has committed as much as $6.5 billion to invest in the country.

To attract small businesses through WhatsApp, Facebook last year invested $5.7 billion in Reliance Industries‘s media and telecommunications arm, Jio Platforms.

Alphabet’s Google also pumped $4.5 billion into Jio last year from a newly created $10 billion fund earmarked for investment in India over five to seven years.

Compliance

The government has tried to balance attracting high-tech investment with nationalist policies aimed at protecting local businesses and, critics say, advancing its political agenda.

A border confrontation with China prompted it to effectively ban Chinese social media apps, including TikTok and WeChat.

The government has also forced foreign firms to store data locally against fierce lobbying, and its promotion of a domestic payment card network prompted Mastercard to complain to the U.S. government about the use of nationalism.

In 2019, compliance issues with new regulations saw Amazon remove thousands of products from its e-commerce platform. The e-tailer is separately facing scrutiny by the Competition Commission of India for its retailing practices.

Twitter publicly refused to comply with some government demands to remove content, a stance which some industry executives said may have aggravated its current situation.

WhatsApp has gone to court rather than comply with a new law requiring social media firms to trace the origin of dangerous or criminal posts on their platforms. The message app operator said it cannot comply without breaking encryption, while observers said yielding could prompt similar demands in other countries.

At the same time, WhatsApp has faced regulatory delays that have limited its payment service to just 4% of its 500 million customers. Nevertheless, it is pressing ahead with hiring for a service it has called a “globally significant” opportunity.

Government officials have shown little patience for objections. IT minister Ravi Shankar Prasad said any robust democracy must have accountability mechanisms, such as the ability to identify the originator of messages.

“A private company sitting in America should refrain from lecturing us on democracy when you are denying your users the right to effective redressal forum,” Prasad said in an interview with the Hindu newspaper published on Sunday.

Still, continued antagonism could imperil Modi’s ambition of making India a go-to investment destination.

“It’s a question of what you would develop in a three-to-five-year horizon,” said another executive familiar with the thinking of U.S. firms. “Do you do that in India or do you do that in another country. That’s where the conversation is.”

VentureBeat

VentureBeat’s mission is to be a digital town square for technical decision-makers to gain knowledge about transformative technology and transact. Our site delivers essential information on data technologies and strategies to guide you as you lead your organizations. We invite you to become a member of our community, to access:

  • up-to-date information on the subjects of interest to you
  • our newsletters
  • gated thought-leader content and discounted access to our prized events, such as Transform 2021: Learn More
  • networking features, and more

Become a member

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://venturebeat.com/2021/06/13/frequent-run-ins-with-indian-government-complicates-tech-giants-plans/

Continue Reading

Artificial Intelligence

Global Economic Impact of AI: Facts and Figures

Published

on

Sharmistha Chatterjee Hacker Noon profile picture

@sharmi1206Sharmistha Chatterjee

https://www.linkedin.com/in/sharmistha-chatterjee-7a186310/

Summarization of Research Insights from Emerj, Harvard Business Review, MIT Sloan, and Mckinsey

Wall Street, venture capitalists, technology executives, data scientists — all have important reasons to understand the growth and opportunity in the artificial intelligence market to access business growth and opportunities. This gives them insights on funds invested in AI and analytics as well potential revenue growth and turnover. Indeed, the growth of AI, continuing research, development of easier open source libraries and applications in small to large scale industries are sure to revolutionize the industry the next two decades and the impact is getting felt in almost all the countries worldwide.

To dive deep into the growth of AI and future trends, an insight into the type and size of the market is essential along with (a) AI-related industry market research forecasts and (b) data from reputable research sources for insight into AI valuation and forecasting.

The blog is structured as follows :

  • To provide a short consensus on well-researched projections of AI’s growth and market value in the coming decade.
  • To understand the per capita income and GDP of each country from businesses driven by AI and analytics.

Impact of AI is so widespread, touching and vivid that:

IBM’s CEO claims a potential $2 trillion dollar market for “cognitive computing”).

Google co-founder Larry Page states that “Artificial intelligence would be the ultimate version of Google. The ultimate search engine is capable of understanding everything on the web. It will become so much AI driven that in near future ,it would understand exactly what you wanted and it would give you the right thing. We’re nowhere near doing that now. However, we can get incrementally closer to that, and that is basically what we’re working on”.

Different sectors exhibit dynamics in terms of adopting and absorbing AI, leading to different levels of economic impact.

Source

On comparing different industry-sectors we see from the figure above:

In high-tech industries like Telecom and media has already adopted AI relatively rapidly and looking for transformations in all possible avenues. They are then followed by Consumer, Financial Services and Professional Services.

Healthcare and Industrial Sector are adopting AI slowly. Energy and Public Sector are the slowest adaptors to this transition.

Further, the economic impact in the telecom and high-tech sector could be more than double that of healthcare in 2030. If the national average of macroeconomic impact is 100, healthcare might experience 40 percent lower impact (i.e. 60). The fast and rapid adopters like the telecom and high-tech sector are highly influenced by AI and could experience 40 percent higher impact (i.e. 140) than the national average.

Several internal and external factors specific to a country or a state, have been known to affect AI-driven productivity growth, including labor automation, innovation, and new competition. In addition, certain micro factors, such as the pace of adoption of AI, and macro factors such as a country’s global connectedness and labor-market structure also plays a certain factor to the size of the impact.

The end result is to grow the AI value chain and boost the ICT sector, making an important economic contribution to an economy.

Production channels: Direct economic impact of AI aims to automate production and save cost. It primarily considers three production dimensions. Firstly it includes calling labor and capital “augmentation”, where new AI capacity is developed, deployed, and operated by new engineers and big data analysts. Second, investment in AI technologies saves labor as machines take over tasks that humans currently perform. Thirdly, better AI-driven innovation saves overall cost (including infrastructure), enabling firms to produce the same output with the same or lower inputs.

Augmentation: Relates to increased use of productive AI-driven labor and capital.

Substitution: AI-driven technologies offer better results in the field like automation, where it has been found to be more cost-effective. It has also discovered ways and means to substitute other factors of production. Advanced economies could gain about 10 to 15 percent of the impact from labor substitution, compared with an impact of 5 to 10 percent in developing economies.

Product and service innovation and extension: Motivation for investment in AI beyond labor substitution can produce additional economic output by expanding firms’ portfolios, increasing channels for products and services (for e.g. AI-based recommendations), developing new business models, or combination of the three.

Externality channels: It serves as one of the external channels where the application of AI tools and techniques can contribute to economic global flows (for e.g. chatbots, news aggregation engines). Such flow happens inter-country (states and geographical boundaries) and even between countries that facilitate more efficient cross-border commerce. It is found that countries that are more connected and participate more in global flows would clearly benefit more from AI. Further AI could boost supply chain efficiency, reduce complexities associated with global contracts, classification, and trade compliance.

Wealth creation and reinvestment: AI is contributing to higher productivity of economies, efficiency gains. Further innovations result in an increase in wages for workers, entrepreneurs, and firms in the form of profits, higher consumption, and more productive investment.

Transition and implementation costs: Several costs incurred while executing the transition to AI like organization restructuring costs, adoption to new solutions, integration costs, and associated project and consulting fees are known to affect the transition in a negative way. Businesses should do a trade-off between cost and benefit analysis and correctly strategize their roadmap.

Negative externalities: AI could induce major negative distributional externalities affecting workers by depressing the labor share of income and potential economic growth.

The following figure illustrates the detailed overall economic impact sustained due to the wider adoption of AI techniques and strategies by businesses.

Source

AI-driven businesses have led to a positive impact on the growth of revenue over consecutive years. More so, the statements made by renowned founders, CEOs, entrepreneurs and visionary leaders is evident from the figure below as it shows the impact of AI on global GDP, the maximum being obtained from venture-backed startups.

Source: https://emerj.com/ai-sector-overviews/valuing-the-artificial-intelligence-market-graphs-and-predictions/

“Tractica forecasts that the revenue generated from the direct and indirect application of AI software is estimated to grow from $643.7 million in 2016 to $36.8 billion by 2025. This represents a significant growth curve for the 9-year period with a compound annual growth rate (CAGR) of 56.8%.”

Tractica has taken a conservative adoption of AI in the hedge fund and investment community, with an assumption that roughly 50% of the hedge fund assets traded by 2025 will be AI-driven. Under this estimate, the algorithmic trading use case remains the top use case among the 191 use cases identified by Tractica.

Further as per reports from Tractica, the market for enterprise AI systems will increase from $202.5 million in 2015 to $11.1 billion by 2024, as depicted in the following figure.

View of Worldwide growth of AI revenue, Source — Tractica

The growth forecasts over the next decade clearly show China’s dominance over the AI market yielding a significant increase in GDP, followed by USA, Nothern Europe, and other nations.

In China, AI is projected to give the economy a 26% boost over the next 13 years, measuring an equivalent of an extra $7 trillion in GDP, helping China to rise to the top. As North America’s companies are widely using AI, the adaptation is at an accelerating phase that it can expect a 14.5% increase in GDP, worth $3.7 trillion.

As the GDP growth varies across continents and nations, the level of AI absorption also varies significantly between the country groups with the most and the least absorption. The below figure demonstrates statistics of economies with higher readiness to benefit from AI. Such countries achieve absorption levels about 11 percentage points higher than those of slow adopters by 2023, and this gap looks set to widen to about 23 percentage points by 2030. This further gives an indication of the digital divide created from AI, between advanced and developing economies.

Source: Mckinsey

The resulting gap in net economic impact between the country groups with the highest economic gains and those with the least is likely to become larger, for e.g. a large gap in economic impact between the leading and the lagging — between Sweden and Zambia. The gap could widen from three percentage points in 2025 to 19 percentage points in 2030 in terms of net GDP impact.

AI is internationally recognized as the main driver of future growth and productivity, innovation, competitiveness and job creation for the 21st century. However, there remain certain technical challenges, that need to be overcome to take it to the next step. The key challenges include

  • Labeled training data
  • Obtaining sufficiently large data sets. 
  • Difficulty explaining results
  • Difficulty generalizingScaling challengesRisk of bias

Apart from the common technical challenges, risks, and barriers faced by organisations implementing AI are evident.

It is now the responsibility of policymakers and business leaders to take measurable actions to address the challenges, support researchers, data scientists, business analysts, and all included in the AI ecosystem to drive the economy with huge momentum.

As rightly quoted by Stephen Hawking, Famous Theoretical Physicist, Cosmologist, and Author:

“Success in creating AI would be the biggest event in human history. Unfortunately, it might also be the last, unless we learn how to avoid the risks.”

References

  1. Valuing the Artificial Intelligence Market, Graphs and Predictions: https://emerj.com/ai-sector-overviews/valuing-the-artificial-intelligence-market-graphs-and-predictions/
  2. NOTES FROM
    THE AI FRONTIERMODELING THE IMPACT OF AI ON THE WORLD ECONOMY: 
    https://www.itu.int/dms_pub/itu-s/opb/gen/S-GEN-ISSUEPAPER-2018-1-PDF-E.pdf
  3. USA-China-EU plans for AI: where do we stand: https://ec.europa.eu/growth/tools-databases/dem/monitor/sites/default/files/DTM_AI%20USA-China-EU%20plans%20for%20AI%20v5.pdf
  4. https://hbr.org/insight-center/interacting-with-ai
  5. https://sloanreview.mit.edu/projects/reshaping-business-with-artificial-intelligence/

Tags

Join Hacker Noon

Create your free account to unlock your custom reading experience.

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://hackernoon.com/global-economic-impact-of-ai-facts-and-figures-jw1n35o3?source=rss

Continue Reading
Aviation4 days ago

The Story Of The Boeing 777 Family

zephyrnet5 days ago

7th Global Blockchain Congress by Agora Group & TDeFi on June 21st and 22nd, 2021, Dubai.

Big Data5 days ago

.NET DEVELOPMENT

Crowdfunding4 days ago

April/May 2021 Top Campaigns

Blockchain5 days ago

Woonkly will be the official Title Sponsor of the 7th edition Global Blockchain Congress organized by Agora Group in Dubai

Blockchain5 days ago

Death Cross is Appearing Over Bitcoin Price Chart

Esports4 days ago

Every new Passive Power in Legends of Runeterra Lab of Legends 2.9.0

Crowdfunding5 days ago

US Fintech Broadridge Partners with Amazon Web Services to Expand Private Market Hub, Leveraging DLT

Big Data5 days ago

China arrests over 1,100 suspects in crackdown on crypto-related money laundering

Blockchain4 days ago

Crypto Fund Manager Says Bitcoin ETFs to be Approved By 2022

Gaming5 days ago

TrustDice Review: Features & Promotions

Aviation1 day ago

Delta Air Lines Flight Diverts To Oklahoma Over Unruly Off-Duty Flight Attendant

Esports2 days ago

Lost Ark Founders Pack: Everything You Need to Know

Fintech4 days ago

PayPal launches PayPal Rewards Card in Australia

Cleantech5 days ago

TC Energy Cancels Keystone XL Pipeline

Energy3 days ago

Industrial robots market in the automotive industry | $ 3.97 billion growth expected during 2021-2025 | 17000+ Technavio Research Reports

Cyber Security3 days ago

Data Breach that Impacted Both Audi of America and Volkswagen of America

Energy3 days ago

Daiki Axis Co., Ltd. (4245, First Section, Tokyo Stock Exchange) Overview of Operating Performance for the First Three Months Ended March 31, 2021

Cleantech3 days ago

Tesla Model S 420 Plaid Is The Best Car In The World (But Not For Me)

Aviation1 day ago

Spirit Airlines Just Made The Best Argument For Lifting LaGuardia’s Perimeter Rule

Trending