Connect with us

Big Data

Australia’s two largest states trial facial recognition software to police pandemic rules

Published

on

By Byron Kaye

SYDNEY (Reuters) – Australia’s two most populous states are trialling facial recognition software that lets police check people are home during COVID-19 quarantine, expanding trials that have sparked controversy to the vast majority of the country’s population.

Little-known tech firm Genvis Pty Ltd said on a website for its software that New South Wales (NSW) and Victoria, home to Sydney, Melbourne and more than half of Australia’s 25 million population, were trialling its facial recognition products. Genvis said the trials were being conducted on a voluntary basis.

The Perth, Western Australia-based startup developed the software in 2020 with WA state police to help enforce pandemic movement restrictions, and has said it hopes to sell its services abroad.

South Australia state began trialling a similar, non-Genvis technology last month, sparking warnings from privacy advocates around the world about potential surveillance overreach. The involvement of New South Wales and Victoria, which have not disclosed that they are trialling facial recognition technology, may amplify those concerns.

NSW Premier Gladys Berejiklian said in an email the state was “close to piloting some home quarantine options for returning Australians”, without directly responding to questions about Genvis facial recognition software. Police in NSW referred questions to the state premier.

Victoria Police referred questions to the Victorian Health department, which did not respond to requests for comment.

Under the system being trialled, people respond to random check-in requests by taking a ‘selfie’ at their designated home quarantine address. If the software, which also collects location data, does not verify the image against a “facial signature”, police may follow up with a visit to the location to confirm the person’s whereabouts.

Though the technology has been used in WA since last November, it has more recently been pitched as a tool to enable the country to reopen its borders, ending a system in place since the start of the pandemic that requires international arrivals to spend two weeks in hotel quarantine under police guard.

Aside from the pandemic, police forces have expressed interest in using facial recognition software, prompting a backlash from rights groups about the potential to target minority groups.

While the recognition technology has been used in countries like China, no other democracy has been reported as considering its use in connection with coronavirus containment procedures.

‘KEEP COMMUNITIES SAFE’

Genvis Chief Executive Kirstin Butcher declined to comment on the trials, beyond the disclosures on the product website.

“You can’t have home quarantine without compliance checks, if you’re looking to keep communities safe,” she said in a phone interview.

“You can’t perform physical compliance checks at the scale needed to support (social and economic) re-opening plans so technology has to be used.”

But rights advocates warned the technology may be inaccurate, and may open the window for law enforcement agencies to use people’s data for other purposes without specific laws stopping them.

“I’m troubled not just by the use here but by the fact this is an example of the creeping use of this sort of technology in our lives,” said Toby Walsh, a professor of Artificial Intelligence at University of NSW.

Walsh questioned the reliability of facial recognition technology in general, which he said could be hacked to give false location reports.

“Even if it works here … then it validates the idea that facial recognition is a good thing,” he said. “Where does it end?”

The government of Western Australia has said it banned police from using data collected by COVID-related software for non-COVID matters. The WA police say they have put 97,000 people through home quarantine, using facial recognition, without incident.

“The law should prevent a system for monitoring quarantine being used for other purposes,” said Edward Santow, a former Australian Human Rights Commissioner who now leads an artificial intelligence ethics project at University of Technology, Sydney.

“Facial recognition technology might seem like a convenient way to monitor people in quarantine but … if something goes wrong with this technology, the risk of harm is high.”

(Reporting by Byron Kaye; Editing by Kenneth Maxwell)

Image Credit: Reuters

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://datafloq.com/read/australias-two-largest-states-trial-facial-recognition-software-police-pandemic-rules/17905

Big Data

Proximity labeling: an enzymatic tool for spatial biology

Published

on

In this Forum, we highlight how cutting-edge, proximity-dependent, enzymatic labeling tools, aided by sequencing technology developments, have enabled the extraction of spatial information of proteomes, transcriptomes, genome organization, and cellular networks. We also discuss the potential applications of proximity labeling in the unexplored field of spatial biology in live systems.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(21)00211-0?rss=yes

Continue Reading

Big Data

Synthetic biology applications of the yeast mating signal pathway

Published

on


Glossary

Central carbon metabolism (CCM)

as the main source of energy, CCM oxidizes carbon through glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle.

Chassis

a cell host or an organism for the production of biochemicals such as enzymes by introducing synthetic modules or devices into the cell.

Circuit

an assembly of biological parts that enables cells to perform logical functions, such as genetic switches, oscillators, and logic gates.

Convolutional neural network

a class of artificial neural networks with multiple building blocks that automatically and adaptively learn spatial hierarchies of features through back-propagation.

Clustered regularly interspaced short palindromic repeats (CRISPR)

a genome-editing tool in which CRISPR-associated nuclease 9 (Cas9)–guide RNA (gRNA) complexes recognize a protospacer adjacent motif through base-pairing and then cleave the target DNA,

CRISPR activation or interference (CRISPRa/i)

a tool that uses dead Cas protein and gRNA to activate or repress genes, resulting in gene upregulation or downregulation, respectively.

Cubic ternary complex model

an equilibrium model that describes the interactions between receptor and ligand. This model simulates the interactions of G proteins and receptors in both their active and inactive conformations.

G proteins

heterotrimeric G protein complexes are composed of α, β and γ subunits. Replacement of GDP by GTP in Gα causes a conformational change that dissociates the Gβγ subunits, leading to the activation of downstream signaling.

G protein-coupled receptor (GPCR)

a generic class of versatile, seven transmembrane-domain proteins that regulate a diverse array of intracellular signaling cascades in response to hormones, neurotransmitters, and other stimuli.

Karyogamy

a cascade of molecular events that finally lead to fusion of the nuclei and the formation of diploid cells.

Metabolic engineering

a new scientific field that combines multi-gene recombination technology with metabolic regulation and biochemical engineering to overproduce desired products.

Mitogen-activated protein kinases (MAPKs)

a family of serine/threonine kinases that convert extracellular signals into a diverse range of cellular responses.

Omics

studies include genomics, transcriptomics, proteomics, and metabolomics that characterize and quantify pools of biological molecules, and together give rise to the field of integrative genetics.

Oscillator

a genetic circuit where oscillation is generated by the inhibition and activation of transcriptional/translational feedback loops.

Pheromone-response element (PRE)

a cis element that is present in multiple copies in the promoters of a variety of pheromone-responsive genes; PREs interact with Ste12 to initiate the transcription of pheromone-induced genes.

Quorum sensing

a cell density-dependent phenomenon in which cells adapt their behavior by synthesizing, secreting, perceiving, and reacting to small diffusible signaling molecules termed autoinducers.

Scaffold protein

proteins that recruit other proteins to form a functional unit, thus enhancing signaling efficiency and fidelity.

Ste5ΔN-CTM

a Ste5 mutant that lacks the Gβγ-binding site because its N-terminus has been truncated; Ste5ΔN-CTM is no longer recruited to the plasma membrane following pheromone treatment.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(21)00210-9?rss=yes

Continue Reading

Big Data

Biotechnology of functional proteins and peptides for hair cosmetic formulations

Published

on

  • New cosmetic science.

    Elsevier, 1997

    • Bouillon C.
    • Wilkinson J.

    The science of hair care.

    CRC Press, 2005

    • Pierce J.S.
    • et al.

    Characterization of formaldehyde exposure resulting from the use of four professional hair straightening products.

    J. Occup. Environ. Hyg. 2011; 8: 686-699

    • Ahmed M.B.
    • et al.

    Neurotoxic effect of lead on rats: relationship to apoptosis.

    Int. J. Health Sci. (Qassim). 2013; 7: 192-199

    • Martins M.
    • et al.

    α-Chymotrypsin catalysed oligopeptide synthesis for hair modelling.

    J. Clean. Prod. 2019; 237117743

    • Tinoco A.
    • et al.

    Fusion proteins with chromogenic and keratin binding modules.

    Sci. Rep. 2019; 9: 14044

    • Cruz C.F.
    • et al.

    Peptide–protein interactions within human hair keratins.

    Int. J. Biol. Macromol. 2017; 101: 805-814

    • Sajna K.V.
    • et al.

    White biotechnology in cosmetics.

    in: Pandey A. Industrial biorefineries and white biotechnology. Elsevier, 2015: 607-652

  • Role of protein in cosmetics.

    Clin. Dermatol. 2008; 26: 321-325

  • Yoshioka, I. and Kamimura, Y. Seiwa Kasei Co. Ltd. Keratin hydrolyzate useful as hair fixatives, US4279996.

  • Fahnestock, S.R. and Schultz, T.M. EI Du Pont de Nemours and Company. Water-soluble silk proteins compositions for skin care, hair care or hair coloring, US7060260B2.

  • Detert, M. et al. Beiersdorf AG. Hair styling preparations with special protein hydrolysates, EP1878423A2.

    • Barba C.
    • et al.

    Restoring important hair properties with wool keratin proteins and peptides.

    Fibers Polym. 2010; 11: 1055-1061

    • Fernandes M.M.
    • et al.

    Keratin-based peptide: biological evaluation and strengthening properties on relaxed hair.

    Int. J. Cosmet. Sci. 2012; : 338-346

    • Ribeiro A.
    • et al.

    Potential of human γD-crystallin for hair damage repair: insights into the mechanical properties and biocompatibility.

    Int. J. Cosmet. Sci. 2013; 35: 458-466

  • Ross, V.M. Further preparations of silk proteins, seed oils, monosaccharide, natural botanicals and polysaccharide mixtures in compositions for hair care or hair repair, and skin care and topical treatments, US9023404B2.

    • Cruz C.F.
    • et al.

    Effect of a peptide in cosmetic formulations for hair volume control.

    Int. J. Cosmet. Sci. 2017; 39: 600-609

  • Edman, W.W. and Klemm, E.J. Shiseido Co. Ltd. Permanent waving compositions, US4798722.

  • Lang, G. et al. LOreal SA. Cosmetic temporary coloring compositions containing protein derivatives, US5192332.

  • Tomita, M. et al. Iwase Cosfa Co. Ltd, Morinaga Milk Industry Co. Ltd. Milk-protein hydrolyzates and compositions for use as hair and skin treating agent, US5314783.

  • Igarashi, S. et al. Kanebo Ltd. Hair coloring composition comprising anti-hair antibodies immobilized on coloring materials, and hair coloring methods, US5597386.

  • Oshika, M. and Naito, S. Kao Corp. Acylated silk proteins for hair care, US5747015.

  • Shah, S.M. Johnson and Johnson Consumer Inc. Heat-safe hair preparation and method of using same, US6156295.

  • Cannell, D. and Nguyen, N. LOreal SA. Composition for treating hair against chemical and photo damage, US6013250.

  • Schultz, T.M. and Tran, H.T. EI Du Pont de Nemours and Company. Modified soy proteins in personal care compositions, US2005/0008604A1.

    • Isnard M.D.
    • et al.

    Development of hair care formulations based on natural ingredients.

    Int. J. Phytocosmet. Nat. Ingred. 2019; 6: 9

    • Tinoco A.
    • et al.

    Keratin-based particles for protection and restoration of hair properties.

    Int. J. Cosmet. Sci. 2018; 40: 408-419

    • Tinoco A.
    • et al.

    Keratin:Zein particles as vehicles for fragrance release on hair.

    Ind. Crop. Prod. 2021; 159113067

    • Camargo Jr., F.B.
    • et al.

    Prevention of chemically induced hair damage by means of treatment based on proteins and polysaccharides.

    J. Cosmet. Dermatol. 2021; ()

    • Malinauskyte E.
    • et al.

    Penetration of different molecular weight hydrolysed keratins into hair fibres and their effects on the physical properties of textured hair.

    Int. J. Cosmet. Sci. 2021; 43: 26-37

    • Cavallaro G.
    • et al.

    Halloysite/keratin nanocomposite for human hair photoprotection coating.

    ACS Appl. Mater. Interfaces. 2020; 12: 24348-24362

    • Baus R.A.
    • et al.

    Strategies for improved hair binding: keratin fractions and the impact of cationic substructures.

    Int. J. Biol. Macromol. 2020; 160: 201-211

  • Cetintas, S. New hair botox material and the method to apply this material to hair, US2020/0197287A1.

    • Basit A.
    • et al.

    Health improvement of human hair and their reshaping using recombinant keratin K31.

    Biotechnol. Rep. 2018; 20e00288

    • Schulze Zur Wiesche E.
    • et al.

    Prevention of hair surface aging.

    J. Cosmet. Sci. 2011; 62: 237-249

    • Daithankar A.V.
    • et al.

    Moisturizing efficiency of silk protein hydrolysate: silk fibroin.

    Indian J. Biotechnol. 2005; 4: 115-121

    • Fernandes M.
    • Cavaco-Paulo A.

    Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair.

    Biocatal. Biotransform. 2012; 30: 10-19

    • Tinoco A.
    • et al.

    Crystallin fusion proteins improve the thermal properties of hair.

    Front. Bioeng. Biotechnol. 2019; 7: 298

    • Wistow G.
    • et al.

    Myxococcus xanthus spore coat protein S may have a similar structure to vertebrate lens βγ-crystallins.

    Nature. 1985; 315: 771-773

  • Azizova, M. et al. Henkel IP and Holding GmbH. Hair treatment composition with naturally-derived peptide identical to human hair, US9505820B2.

    • Cruz C.F.
    • et al.

    Changing the shape of hair with keratin peptides.

    RSC Adv. 2017; 7: 51581-51592

  • Hawkins, G. et al. ELC Management LLC. Compositions and methods for permanent straightening of hair, US9011828B2.

  • Dimotakis, E. et al. LOreal SA. Hair cosmetic and styling compositions based on maleic acid copolymers and polyamines, US2013/0309190A1.

    • Song K.
    • et al.

    Effects of chemical structures of polycarboxylic acids on molecular and performance manipulation of hair keratin Kaili.

    RSC Adv. 2016; 6: 58594-58603

    • Qin X.
    • et al.

    Enzyme-triggered hydrogelation via self-assembly of alternating peptides.

    Chem. Commun. (Camb.). 2013; 49: 4839-4841

    • Yazawa K.
    • Numata K.

    Recent advances in chemoenzymatic peptide syntheses.

    Molecules. 2014; 19: 13755-13774

  • Savaides, A. and Tasker, R. Zotos International Inc. Formulations and methods for straightening and revitalizing hair, US2014/0261518A1.

  • Anthony, M.M. Copomon Enterprises LLC, Keratin Holdings LLC. Method of preparing a hair treatment formulation comprising nanoparticles in solution and method of hair treatment utilizing a treatment formulation comprising nanoparticles in solution, US9078818B1.

  • Chahal, S.P. et al. Croda International PLC. Protein-acrylate copolymer and hair conditioning product comprising said polymer, US9421159B2.

  • Huang, X. et al. EI Du Pont de Nemours and Company. Peptide-based conditioners and colorants for hair, skin and nails, US7220405B2.

  • Slusarewiez, P. Unilever Home and Personal Care USA. Method of coloring hair, US6773462B2.

  • Benson, R.E. et al. EI Du Pont de Nemours and Company, Affinergy LLC. Hair binding peptides and peptide-based hair reagents for personal care, US8273337B2.

  • Chung, Y.J. et al. Peptide exhibiting hair growth promoting activity and/or melanin production promoting activity and use thereof, US10344061B2.

  • Vickers, E.R. Clinical Stem Cells Pty Ltd. Peptides for hair growth, US2019/0091494A1.

    • Günay K.A.
    • et al.

    Selective peptide-mediated enhanced deposition of polymer fragrance delivery systems on human hair.

    ACS Appl. Mater. Interfaces. 2017; 9: 24238-24249

    • Bolduc C.
    • Shapiro J.

    Hair care products: waving, straightening, conditioning, and coloring.

    Clin. Dermatol. 2001; 19: 431-436

    • Dias M.F.R.G.

    Hair cosmetics: an overview.

    Int. J. Trichol. 2015; 7: 2

    • Barba C.
    • et al.

    Effect of wool keratin proteins and peptides on hair water sorption kinetics.

    J. Therm. Anal. Calorim. 2010; 102: 43-48

    • Villa A.L.V.
    • et al.

    Feather keratin hydrolysates obtained from microbial keratinases: effect on hair fiber.

    BMC Biotechnol. 2013; 13: 15

    • Mancon S.
    • et al.

    Hair conditioning effect of vegetable native protein in shampoo formulations.

    Seifen Ole Fette Wachse J. 2012; 138: 38-42

    • Wang S.
    • et al.

    Modification of wheat gluten for improvement of binding capacity with keratin in hair.

    R. Soc. Open Sci. 2018; 5171216

  • Sahib, S. and Jungman, E. Aquis Hairsciences Inc. Composition for improving hair health, US2020/0069551A1.

    • Antunes E.
    • et al.

    The effects of solvent composition on the affinity of a peptide towards hair keratin: experimental and molecular dynamics data.

    RSC Adv. 2015; 5: 12365-12371

  • Hair: its structure and response to cosmetic preparations.

    Clin. Dermatol. 1996; 14: 105-112

    • Cruz C.
    • et al.

    Human hair and the impact of cosmetic procedures: a review on cleansing and shape-modulating cosmetics.

    Cosmetics. 2016; 3: 26

    • Robbins C.R.

    Chemical composition of different hair types.

    in: Chemical and physical behavior of human hair. Springer, 2012: 105-176

    • Antunes E.
    • et al.

    Insights on the mechanical behavior of keratin fibrils.

    Int. J. Biol. Macromol. 2016; 89: 477-483

    • Kutlubay Z.
    • Serdaroglu S.

    Anatomy and physiology of hair.

    in: Hair and scalp disorders. IntechOpen, 2017: 13-27

    • Harrison S.
    • Sinclair R.

    Hair colouring, permanent styling and hair structure.

    J. Cosmet. Dermatol. 2004; 2: 180-185

    • Draelos Z.D.

    Hair care: an illustrated dermatologic handbook.

    CRC Press, 2004

    • Takada K.
    • et al.

    Influence of oxidative and/or reductive treatment on human hair (I): analysis of hair-damage after oxidative and/or reductive treatment.

    J. Oleo Sci. 2003; 52: 541-548

    • Kuzuhara A.

    Analysis of structural changes in bleached keratin fibers (black and white human hair) using Raman spectroscopy.

    Biopolymers. 2006; 81: 506-514

    • Wolfram L.J.
    • et al.

    The mechanism of hair bleaching.

    J. Soc. Cosmet. Chem. 1970; 900: 875-900

    • Bagiyan G.A.
    • et al.

    Oxidation of thiol compounds by molecular oxygen in aqueous solutions.

    Russ. Chem. Bull. 2003; 52: 1135-1141

    • Blasi-Romero A.
    • et al.

    In vitro investigation of thiol-functionalized cellulose nanofibrils as a chronic wound environment modulator.

    Polymers (Basel). 2021; 13: 249

  • PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
    Click here to access.

    Source: https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(21)00213-4?rss=yes

    Continue Reading

    Big Data

    VW’s 9-month electric vehicle deliveries to China more than triple

    Published

    on

    FRANKFURT (Reuters) – Volkswagen’s deliveries of battery-powered electric vehicles to China more than tripled in the first nine months of the year, the carmaker said on Friday, less than two months after it flagged the need to change its e-car strategy there.

    Deliveries of battery electric vehicles (BEV) to the world’s largest car market stood at 47,200 in the January-September period, up from 15,700 in the same period last year.

    “As planned, we significantly accelerated the BEV market ramp-up in China in the third quarter, and we are on track to meet our target for the year of delivering 80,000 to 100,000 vehicles of the ID. model family,” Christian Dahlheim, head of group sales, said.

    Volkswagen Chief Executive Herbert Diess in July said the carmaker had to change its approach to how it markets its BEVs in China after first-half deliveries stood at just 18,285.

    (Reporting by Christoph Steitz; Editing by Maria Sheahan)

    Image Credit: Reuters

    PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
    Click here to access.

    Source: https://datafloq.com/read/vws-9-month-electric-vehicle-deliveries-china-triple/18644

    Continue Reading
    Esports4 days ago

    The best teams in Hearthstone Mercenaries

    Energy5 days ago

    Dover Announces Acquisition Of LIQAL B.V., A Leading Provider Of LNG And Hydrogen Fueling Solutions

    Esports4 days ago

    How Many Chapters are in the Demon Slayer Game?

    Energy5 days ago

    Sigma Lithium Says Technology Will Be Key To Make Lithium Greener And Cheaper At Financial Times Live Commodities Summit

    Aviation5 days ago

    Ottawa eyes charging airport security with vaccine verification for travellers

    zephyrnet5 days ago

    APENFT Foundation’s Announcement on Adjusting the APENFT(NFT) Airdrop Strategy

    Gaming5 days ago

    Mobile Casino Apps Explained

    Gaming5 days ago

    Criteria For Using An Online Casino

    Artificial Intelligence5 days ago

    AI Visual Inspection For Defect Detection in Manufacturing

    Aviation3 days ago

    Vaccine passports for overseas travel to be rolled out this week

    Payments2 days ago

    Everyone is building a wallet

    Esports4 days ago

    Demon Slayer: Kimetsu no Yaiba – The Hinokami Chronicles Character Tier List

    Crowdfunding5 days ago

    Walmart, With Eyes on Amazon, Tries to Build a Fintech Startup

    AI3 days ago

    When to Contact an Attorney After a Car Accident

    AI3 days ago

    5 Ways to Attract Clients with Law Firm SEO

    Esports5 days ago

    What is the VALORANT rank distribution?

    IOT5 days ago

    How IoT Can Improve Your Manufacturing Operations

    Supply Chain3 days ago

    Top 10 hydraulic cylinder manufacturers in China

    Esports5 days ago

    Rating every new special edition jersey at the 2021 World Championship

    Energy5 days ago

    Mantaro Silver Corp. Appoints Luis Fernando Kinn Cortez as a Director

    Trending