Zephyrnet Logo

Nanowire could provide a stable, easy-to-make superconducting transistor: Inspired by decades-old MIT research, the new technology could boost quantum computers and other superconducting electronics

Date:

Home > Press > Nanowire could provide a stable, easy-to-make superconducting transistor: Inspired by decades-old MIT research, the new technology could boost quantum computers and other superconducting electronics

Abstract:
Superconductors — materials that conduct electricity without resistance — are remarkable. They provide a macroscopic glimpse into quantum phenomena, which are usually observable only at the atomic level. Beyond their physical peculiarity, superconductors are also useful. They’re found in medical imaging, quantum computers, and cameras used with telescopes.

Nanowire could provide a stable, easy-to-make superconducting transistor: Inspired by decades-old MIT research, the new technology could boost quantum computers and other superconducting electronics


Cambridge, MA | Posted on February 12th, 2021

But superconducting devices can be finicky. Often, they’re expensive to manufacture and prone to err from environmental noise. That could change, thanks to research from Karl Berggren’s group in the Department of Electrical Engineering and Computer Science.

The researchers are developing a superconducting nanowire, which could enable more efficient superconducting electronics. The nanowire’s potential benefits derive from its simplicity, says Berggren. “At the end of the day, it’s just a wire.”

Berggren will present a summary of the research at this month’s IEEE Solid-state Circuits Conference.

Resistance is futile

Most metals lose resistance and become superconducting at extremely low temperatures, usually just a few degrees above absolute zero. They’re used to sense magnetic fields, especially in highly sensitive situations like monitoring brain activity. They also have applications in both quantum and classical computing.

Underlying many of these superconductors is a device invented in the 1960s called the Josephson junction — essentially two superconductors separated by a thin insulator. “That’s what led to conventional superconducting electronics, and then ultimately to the superconducting quantum computer,” says Berggren.

However, the Josephson junction “is fundamentally quite a delicate object,” Berggren adds. That translates directly into cost and complexity of manufacturing, especially for the thin insulating later. Josephson junction-based superconductors also may not play well with others: “If you try to interface it with conventional electronics, like the kinds in our phones or computers, the noise from those just swamps the Josephson junction. So, this lack of ability to control larger-scale objects is a real disadvantage when you’re trying to interact with the outside world.”

To overcome these disadvantages, Berggren is developing a new technology — the superconducting nanowire — with roots older than the Josephson junction itself.

Cryotron reboot

In 1956, MIT electrical engineer Dudley Buck published a description of a superconducting computer switch called the cryotron. The device was little more than two superconducting wires: One was straight, and the other was coiled around it. The cryotron acts as a switch, because when current flows through the coiled wire, its magnetic field reduces the current flowing through the straight wire.

At the time, the cryotron was much smaller than other types of computing switches, like vacuum tubes or transistors, and Buck thought the cryotron could become the building block of computers. But in 1959, Buck died suddenly at age 32, halting the development of the cryotron. (Since then, transistors have been scaled to microscopic sizes and today make up the core logic components of computers.)

Now, Berggren is rekindling Buck’s ideas about superconducting computer switches. “The devices we’re making are very much like cryotrons in that they don’t require Josephson junctions,” he says. He dubbed his superconducting nanowire device the nano-cryotron in tribute to Buck — though it works a bit differently than the original cryotron.

The nano-cryotron uses heat to trigger a switch, rather than a magnetic field. In Berggren’s device, current runs through a superconducting, supercooled wire called the “channel.” That channel is intersected by an even smaller wire called a “choke” — like a multilane highway intersected by a side road. When current is sent through the choke, its superconductivity breaks down and it heats up. Once that heat spreads from the choke to the main channel, it causes the main channel to also lose its superconducting state.

Berggren’s group has already demonstrated proof-of-concept for the nano-cryotron’s use as an electronic component. A former student of Berggren’s, Adam McCaughan, developed a device that uses nano-cryotrons to add binary digits. And Berggren has successfully used nano-cryotrons as an interface between superconducting devices and classical, transistor-based electronics.

Berggren says his group’s superconducting nanowire could one day complement — or perhaps compete with — Josephson junction-based superconducting devices. “Wires are relatively easy to make, so it may have some advantages in terms of manufacturability,” he says.

He thinks the nano-cryotron could one day find a home in superconducting quantum computers and supercooled electronics for telescopes. Wires have low power dissipation, so they may also be handy for energy-hungry applications, he says. “It’s probably not going to replace the transistors in your phone, but if it could replace the transistor in a server farm or data center? That would be a huge impact.”

Beyond specific applications, Berggren takes a broad view of his work on superconducting nanowires. “We’re doing fundamental research, here. While we’re interested in applications, we’re just also interested in: What are some different kinds of ways to do computing? As a society, we’ve really focused on semiconductors and transistors. But we want to know what else might be out there.”

Initial funding for nano-cryotron research in the Berggren lab was provided by the National Science Foundation.

###

Written by Daniel Ackerman, MIT News Office

####

For more information, please click here

Contacts:
Abby Abazorius, MIT News Office
617.253.2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Producing more sustainable hydrogen with composite polymer dots UPPSALA UNIVERSITY February 12th, 2021

Scientists manipulate magnets at the atomic scale February 12th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

CEA-Leti Announces EU Project to Create Dynamically Programmable Wireless 6G Environments: RISE-6G Collaboration Will Develop Technology for Reconfigurable Intelligent Surfaces and Ensure Energy Efficiency, Localization Accuracy and Privacy February 10th, 2021

Superconductivity

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Transition metal ‘cocktail’ helps make brand new superconductors: Concept of high entropy alloys provides a discovery platform for new superconductors January 8th, 2021

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally December 25th, 2020

A new candidate material for quantum spin liquids November 12th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Dynamic 3D printing process features a light-driven twist: Light provides freedom to control each layer and improves precision and speed February 4th, 2021

Discovery could lead to self-propelled robots February 2nd, 2021

Nanoparticle drug delivery technique shows promise for treating pancreatic cancer: Method may also work for breast, prostate, ovarian cancer January 29th, 2021

Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance January 29th, 2021

Possible Futures

Producing more sustainable hydrogen with composite polymer dots UPPSALA UNIVERSITY February 12th, 2021

Scientists manipulate magnets at the atomic scale February 12th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

Nanothermometry to improve anticancer strategies February 10th, 2021

Chip Technology

Scientists manipulate magnets at the atomic scale February 12th, 2021

New EU Quantum Flagship consortium launches a project on silicon spin qubits as a platform for large-scale quantum computing: The QLSI project brings together 19 top European groups to focus on developing highly scalable quantum processors in silicon, and marks a recent addition February 10th, 2021

CEA-Leti Team Paves the Way for Massive Integration of Qubits, Critical for Achieving Quantum Supremacy February 10th, 2021

Home > Press release French Team on Route Towards an Interposer Prototype for Quantum And Control Chips Integration at Very Low Temperature: Platform Optimizes Control and Readout of Qubits by Placing Control Electronics Near Quantum Chips Without Wire Bonding February 10th, 2021

Quantum Computing

New EU Quantum Flagship consortium launches a project on silicon spin qubits as a platform for large-scale quantum computing: The QLSI project brings together 19 top European groups to focus on developing highly scalable quantum processors in silicon, and marks a recent addition February 10th, 2021

CEA-Leti Team Paves the Way for Massive Integration of Qubits, Critical for Achieving Quantum Supremacy February 10th, 2021

Home > Press release French Team on Route Towards an Interposer Prototype for Quantum And Control Chips Integration at Very Low Temperature: Platform Optimizes Control and Readout of Qubits by Placing Control Electronics Near Quantum Chips Without Wire Bonding February 10th, 2021

CEA Is the First Research Center to Acquire A Cryogenic Prober for Testing Quantum Bits February 10th, 2021

Discoveries

Producing more sustainable hydrogen with composite polymer dots UPPSALA UNIVERSITY February 12th, 2021

Scientists manipulate magnets at the atomic scale February 12th, 2021

Nanothermometry to improve anticancer strategies February 10th, 2021

CEA-Leti Announces EU Project to Create Dynamically Programmable Wireless 6G Environments: RISE-6G Collaboration Will Develop Technology for Reconfigurable Intelligent Surfaces and Ensure Energy Efficiency, Localization Accuracy and Privacy February 10th, 2021

Announcements

Producing more sustainable hydrogen with composite polymer dots UPPSALA UNIVERSITY February 12th, 2021

Scientists manipulate magnets at the atomic scale February 12th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

CEA-Leti Announces EU Project to Create Dynamically Programmable Wireless 6G Environments: RISE-6G Collaboration Will Develop Technology for Reconfigurable Intelligent Surfaces and Ensure Energy Efficiency, Localization Accuracy and Privacy February 10th, 2021

Source: http://www.nanotech-now.com/news.cgi?story_id=56559

spot_img

Latest Intelligence

spot_img