Zephyrnet Logo

Nanoscale engineering of catalytic materials for sustainable technologies

Date:

  • 1.

    Lanzafame, P., Perathoner, S., Centi, G., Gross, S. & Hensen, E. J. M. Grand challenges for catalysis in the science and technology roadmap on catalysis for Europe: moving ahead for a sustainable future. Catal. Sci. Technol. 7, 5182–5194 (2017).

    CAS  Article  Google Scholar 

  • 2.

    Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    CAS  Article  Google Scholar 

  • 3.

    Berzelius, J. J. Quelques idées sur une nouvelle force agissant dans les combinaisons des corps organiques. Ann. Chim. 61, 146–151 (1836).

    Google Scholar 

  • 4.

    Taylor, H. S. A theory of the catalytic surface. Proc. R. Soc. London Ser. A 108, 105–111 (1925).

    CAS  Article  Google Scholar 

  • 5.

    Nørskov, J. K. et al. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 37, 2163–2171 (2008).

    Article  CAS  Google Scholar 

  • 6.

    Boudart, M. Catalysis by supported metals. Adv. Catal. 20, 153–166 (1969).

    CAS  Google Scholar 

  • 7.

    Blakely, D. W. & Somorjai, G. A. The dehydrogenation and hydrogenolysis of cyclohexane and cyclohexene on stepped (high miller index) platinum surfaces. J. Catal. 42, 181–196 (1976).

    CAS  Article  Google Scholar 

  • 8.

    Zambelli, T., Wintterlin, J., Trost, J. & Ertl, G. Identification of the “active sites” of a surface-catalyzed reaction. Science 273, 1688–1690 (1996).

    CAS  Article  Google Scholar 

  • 9.

    Thomas, J. M. The ineluctable need for in situ methods of characterising solid catalysts as a prerequisite to engineering active sites. Chem. Eur. J. 3, 1557–1562 (1997).

    CAS  Article  Google Scholar 

  • 10.

    Weckhuysen, B. M. Snapshots of a working catalyst: Possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem. Commun. 97–110 (2002).

  • 11.

    Hashmi, A. S. K. & Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 45, 7896–7936 (2006).

    Article  Google Scholar 

  • 12.

    Liu, X. & Dai, L. Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016).

    CAS  Article  Google Scholar 

  • 13.

    Allard, L. F. et al. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J. Electron Microsc. 58, 199–212 (2009).

    CAS  Article  Google Scholar 

  • 14.

    Schauermann, S., Nilius, N., Shaikhutdinov, S. & Freund, H.-J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Acc. Chem. Res. 46, 1673–1681 (2013).

    CAS  Article  Google Scholar 

  • 15.

    Tsung, C.-K. et al. Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation. J. Am. Chem. Soc. 131, 5816–5822 (2009).

    CAS  Article  Google Scholar 

  • 16.

    Cargnello, M. Colloidal nanocrystals as building blocks for well-defined heterogeneous catalysts. Chem. Mater. 31, 576–596 (2019).

    CAS  Article  Google Scholar 

  • 17.

    Zhou, K. & Li, Y. Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed. 51, 602–613 (2012).

    CAS  Article  Google Scholar 

  • 18.

    Wu, Y., Wang, D. & Li, Y. Nanocrystals from solutions: Catalysts. Chem. Soc. Rev. 43, 2112–2124 (2014).

    CAS  Article  Google Scholar 

  • 19.

    Wu, B. & Zheng, N. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8, 168–197 (2013).

    Article  CAS  Google Scholar 

  • 20.

    Xie, C., Niu, Z., Kim, D., Li, M. & Yang, P. Surface and interface control in nanoparticle catalysis. Chem. Rev. 120, 1184–1249 (2020).

    CAS  Article  Google Scholar 

  • 21.

    Cao, S., Franklin, T., Tang, Y., Li, Y. & Yu, J. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 45, 4747–4765 (2016).

    CAS  Article  Google Scholar 

  • 22.

    An, K. & Somorjai, G. A. Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4, 1512–1524 (2012).

    CAS  Article  Google Scholar 

  • 23.

    Kuhn, J. N., Huang, W., Tsung, C.-K., Zhang, Y. & Somorjai, G. A. Structure sensitivity of carbon−nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J. Am. Chem. Soc. 130, 14026–14027 (2008).

    CAS  Article  Google Scholar 

  • 24.

    Zhao, X., Zhao, Y., Fu, G. & Zheng, N. Origin of the facet dependence in the hydrogenation catalysis of olefins: Experiment and theory. Chem. Commun. 51, 12016–12019 (2015).

    CAS  Article  Google Scholar 

  • 25.

    Ni, B. & Wang, X. Face the edges: Catalytic active sites of nanomaterials. Adv. Sci. 2, 1500085 (2015).

    Article  CAS  Google Scholar 

  • 26.

    Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    CAS  Article  Google Scholar 

  • 27.

    Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    CAS  Article  Google Scholar 

  • 28.

    Xie, X., Li, Y., Liu, Z.-Q., Haruta, M. & Shen, W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749 (2009).

    CAS  Article  Google Scholar 

  • 29.

    Zhong, L. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538, 84–87 (2016).

    CAS  Article  Google Scholar 

  • 30.

    Cargnello, M. et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341, 771–773 (2013).

    CAS  Article  Google Scholar 

  • 31.

    Chen, G. et al. Interfacial effects in iron-nickel hydroxide–platinum nanoparticles enhance catalytic oxidation. Science 344, 495–499 (2014). Demonstrates the concept of using inverse structures — depositing common support materials on precious metals — to develop a stable and active catalyst for CO oxidation based on PtFeNi alloy nanocrystals.

    CAS  Article  Google Scholar 

  • 32.

    Cao, L. et al. Atomically-dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    CAS  Article  Google Scholar 

  • 33.

    Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).

    CAS  Article  Google Scholar 

  • 34.

    Yang, H. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 4, 2422 (2013).

    Article  Google Scholar 

  • 35.

    Wang, Y. et al. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 138, 3278–3281 (2016).

    CAS  Article  Google Scholar 

  • 36.

    Ichikawa, M., Rao, L., Ito, T. & Fukuoka, A. Ensemble and ligand effects in selective alkane hydrogenolysis catalysed on well characterised RhIr and RhFe bimetallic clusters inside NaY zeolite. Faraday Discuss. Chem. Soc. 87, 321–336 (1989).

    CAS  Article  Google Scholar 

  • 37.

    Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    CAS  Article  Google Scholar 

  • 38.

    Serna, P. & Gates, B. C. Zeolite-supported rhodium complexes and clusters: Switching catalytic selectivity by controlling structures of essentially molecular species. J. Am. Chem. Soc. 133, 4714–4717 (2011).

    CAS  Article  Google Scholar 

  • 39.

    Qin, R., Liu, P., Fu, G. & Zheng, N. Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2, 1700286 (2018).

    Article  CAS  Google Scholar 

  • 40.

    Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    CAS  Article  Google Scholar 

  • 41.

    Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat. Chem. 9, 862–867 (2017).

    CAS  Article  Google Scholar 

  • 42.

    Somorjai, G. A. & Park, J. Y. Molecular factors of catalytic selectivity. Angew. Chem. Int. Ed. 47, 9212–9228 (2008).

    CAS  Article  Google Scholar 

  • 43.

    Vilé, G., Almora-Barrios, N., Mitchell, S., López, N. & Pérez-Ramírez, J. From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: Selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds. Chem. Eur. J. 20, 5926–5937 (2014).

    Article  CAS  Google Scholar 

  • 44.

    Witte, P. T. et al. BASF NanoSelect™ technology: Innovative supported Pd- and Pt-based catalysts for selective hydrogenation reactions. Top. Catal. 55, 505–511 (2012).

    CAS  Article  Google Scholar 

  • 45.

    Marshall, S. T. et al. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 9, 853–858 (2010).

    CAS  Article  Google Scholar 

  • 46.

    Pang, S. H., Schoenbaum, C. A., Schwartz, D. K. & Medlin, J. W. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Nat. Commun. 4, 2448 (2013).

    Article  CAS  Google Scholar 

  • 47.

    Albani, D. et al. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 9, 2634 (2018).

    Article  CAS  Google Scholar 

  • 48.

    Feng, Q. et al. Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 139, 7294–7301 (2017).

    CAS  Article  Google Scholar 

  • 49.

    Han, A. et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun. 10, 3787 (2019).

    Article  CAS  Google Scholar 

  • 50.

    Jirkovský, J. S. et al. Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011).

    Article  CAS  Google Scholar 

  • 51.

    Marcinkowski, M. D. et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 10, 325–332 (2018).

    CAS  Article  Google Scholar 

  • 52.

    Marcinkowski, M. D. et al. Selective formic acid dehydrogenation on Pt-Cu single-atom alloys. ACS Catal. 7, 413–420 (2017).

    CAS  Article  Google Scholar 

  • 53.

    Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    CAS  Article  Google Scholar 

  • 54.

    Jiang, L. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 15, 848–853 (2020). Demonstrates the facet dependence of spillover hydrogenation by dispersing Pd atoms onto Cu nanomaterials with different exposed facets.

    CAS  Article  Google Scholar 

  • 55.

    Tauster, S. J., Fung, S. C., Baker, R. T. K. & Horsley, J. A. Strong interactions in supported-metal catalysts. Science 211, 1121–1125 (1981).

    CAS  Article  Google Scholar 

  • 56.

    Macino, M. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2, 873–881 (2019).

    CAS  Article  Google Scholar 

  • 57.

    van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  CAS  Google Scholar 

  • 58.

    Vogt, C. et al. Understanding carbon dioxide activation and carbon–carbon coupling over nickel. Nat. Commun. 10, 5330 (2019).

    Article  Google Scholar 

  • 59.

    Wang, Y. et al. Chemoselective hydrogenation of nitroaromatics at the nanoscale iron(III)-OH-platinum interface. Angew. Chem. Int. Ed. 59, 12736–12740 (2020).

    CAS  Article  Google Scholar 

  • 60.

    Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    CAS  Article  Google Scholar 

  • 61.

    Yao, S. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017). Exploit interfacial effects to create layered gold clusters on molybedenum carbide, evidencing high performance in the low-temperature water-gas shift reaction.

    CAS  Article  Google Scholar 

  • 62.

    Lin, L. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361 (2019).

    CAS  Article  Google Scholar 

  • 63.

    Zhang, J. et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018).

    CAS  Article  Google Scholar 

  • 64.

    Liu, P. & Zheng, N. Coordination chemistry of atomically dispersed catalysts. Natl. Sci. Rev. 5, 636–638 (2018).

    CAS  Article  Google Scholar 

  • 65.

    Liu, K. et al. Cu2O-supported atomically dispersed Pd catalysts for semihydrogenation of terminal alkynes: Critical role of oxide supports. CCS Chem. 1, 207–214 (2019).

    CAS  Article  Google Scholar 

  • 66.

    Lu, G. et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 4, 310–316 (2012).

    CAS  Article  Google Scholar 

  • 67.

    Zhao, M. et al. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539, 76–80 (2016).

    CAS  Article  Google Scholar 

  • 68.

    Wu, B., Huang, H., Yang, J., Zheng, N. & Fu, G. Selective hydrogenation of α, β-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angew. Chem. Int. Ed. 51, 3440–3443 (2012).

    CAS  Article  Google Scholar 

  • 69.

    Zhao, X. et al. Thiol treatment creates selective palladium catalysts for semihydrogenation of internal alkynes. Chem 4, 1080–1091 (2018).

    CAS  Article  Google Scholar 

  • 70.

    Riscoe, A. R. et al. Transition state and product diffusion control by polymer–nanocrystal hybrid catalysts. Nat. Catal. 2, 852–863 (2019). Report a modular approach for the synthesis of polymer–nanocrystal hybrids, where the polymer chemistry and morphology control the performance, affecting the transition state for CO oxidation and controlling the transport of CO2 away from active sites.

    CAS  Article  Google Scholar 

  • 71.

    Lari, G. M., Puértolas, B., Shahrokhi, M., López, N. & Pérez-Ramírez, J. Hybrid palladium nanoparticles for direct hydrogen peroxide synthesis: the key role of the ligand. Angew. Chem. Int. Ed. 56, 1775–1779 (2017).

    CAS  Article  Google Scholar 

  • 72.

    Schrader, I., Warneke, J., Backenköhler, J. & Kunz, S. Functionalization of platinum nanoparticles with L-proline: Simultaneous enhancements of catalytic activity and selectivity. J. Am. Chem. Soc. 137, 905–912 (2015).

    CAS  Article  Google Scholar 

  • 73.

    Chen, G. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 15, 564–569 (2016).

    CAS  Article  Google Scholar 

  • 74.

    Goodman, E. D., Schwalbe, J. A. & Cargnello, M. Mechanistic understanding and the rational design of sinter-resistant heterogeneous catalysts. ACS Catal. 7, 7156–7173 (2017).

    CAS  Article  Google Scholar 

  • 75.

    Amrute, A. P., Mondelli, C., Schmidt, T., Hauert, R. & Pérez‐Ramírez, J. Industrial RuO2‐based Deacon catalysts: Carrier stabilization and active phase content optimization. ChemCatChem 5, 748–756 (2013).

    CAS  Article  Google Scholar 

  • 76.

    Kaiser, S. K. et al. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 3, 376–385 (2020). Demonstrates the impact of metal speciation for acetylene hydrogenation, permitting the design of the first stable heterogeneous catalyst.

    CAS  Article  Google Scholar 

  • 77.

    Lang, R. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat Commun. 10, 234 (2019).

    Article  CAS  Google Scholar 

  • 78.

    Zhai, Y. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 329, 1633–1636 (2010).

    CAS  Article  Google Scholar 

  • 79.

    Matsubu, J. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017). Uses in situ techniques to show that adsorbates on oxide supports induce oxygen-vacancy formation, which drives migration of the adsorbate-functionalized oxide onto the metal.

    CAS  Article  Google Scholar 

  • 80.

    Li, H. et al. Tuning the potential energy landscape to suppress Ostwald ripening in surface-supported catalyst systems. Nano Lett. 19, 8388–8398 (2019). 12.

    CAS  Article  Google Scholar 

  • 81.

    Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019).

    CAS  Article  Google Scholar 

  • 82.

    Frei, M. S. et al. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nat. Commun. 10, 3377 (2019).

    Article  CAS  Google Scholar 

  • 83.

    Xu, C. et al. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 9, 3367 (2018).

    Article  CAS  Google Scholar 

  • 84.

    Prieto, G., Zečević, J., Friedrich, H., De Jong, K. P. & De Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12, 34–39 (2013).

    CAS  Article  Google Scholar 

  • 85.

    Ellis, P. R., Enache, D. I., James, D. W., Jones, D. S. & Kelly, G. J. A robust and precious metal-free high performance cobalt Fischer–Tropsch catalyst. Nat. Catal. 2, 623–631 (2019).

    CAS  Article  Google Scholar 

  • 86.

    Goodman, E. D. et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2, 748–755 (2019).

    CAS  Article  Google Scholar 

  • 87.

    Sun, G. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 9, 4454 (2018).

    Article  CAS  Google Scholar 

  • 88.

    Akri, M. et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 10, 5181 (2019).

    Article  CAS  Google Scholar 

  • 89.

    Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    CAS  Article  Google Scholar 

  • 90.

    Lin, L. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361 (2019).

    CAS  Article  Google Scholar 

  • 91.

    Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018). First stable single-atom catalyst demonstrating superior performance to homogeneous analogues in Suzuki couplings. Introduces the concept of adaptative coordination.

    CAS  Article  Google Scholar 

  • 92.

    Shen, H. et al. Highly robust but surface-active: an N-heterocyclic carbene-stabilized Au25 nanocluster. Angew. Chem. Int. Ed. 58, 17731–17735 (2019).

    CAS  Article  Google Scholar 

  • 93.

    Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  CAS  Google Scholar 

  • 94.

    Xu, H., Cheng, D., Cao, D. & Xeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1, 339–348 (2018).

    CAS  Article  Google Scholar 

  • 95.

    Vorobyeva, E. et al. Atom-by-atom resolution of structure-function relations over low-nuclearity metal catalysts. Angew. Chem. Int. Ed. 58, 8724–8729 (2019). Evidences the critical effect of nuclearity and critically discusses the challenges associated with discriminating between atomically-dispersed species.

    CAS  Article  Google Scholar 

  • 96.

    Jiao, Y., Zheng, Y., Davey, K. & Qiao, S. Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 1, 1–9 (2016).

    Article  CAS  Google Scholar 

  • 97.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  • 98.

    Larrazábal, G. O., Shinagawa, T., Martín, A. J. & Pérez-Ramírez, J. Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nat. Commun. 9, 1477 (2018).

    Article  CAS  Google Scholar 

  • 99.

    Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017).

    CAS  Article  Google Scholar 

  • 100.

    Tyo, E. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015).

    CAS  Article  Google Scholar 

  • 101.

    Liu, G. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810–816 (2017).

    CAS  Article  Google Scholar 

  • 102.

    Liu, P. et al. A vicinal effect for promoting catalysis of Pd1/TiO2: Supports of atomically dispersed catalysts play more roles than simply serving as ligands. Sci. Bull. 63, 675–682 (2018).

    CAS  Article  Google Scholar 

  • 103.

    Avanesian, T. et al. Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J. Am. Chem. Soc. 139, 4551–4558 (2017).

    CAS  Article  Google Scholar 

  • 104.

    Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: Which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019).

    CAS  Article  Google Scholar 

  • 105.

    DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    CAS  Article  Google Scholar 

  • 106.

    Chen, P. et al. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem. Soc. Rev. 43, 1107–1117 (2014).

    CAS  Article  Google Scholar 

  • 107.

    Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    CAS  Article  Google Scholar 

  • 108.

    Dong, B. et al. Deciphering nanoconfinement effects on molecular orientation and reaction intermediate by single molecule imaging. Nat. Commun. 10, 4815 (2019).

    Article  CAS  Google Scholar 

  • 109.

    Pérez-Ramírez, J. & López, N. Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019).

    Article  Google Scholar 

  • 110.

    Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat Catal 1, 696–703 (2018). A fully automated method combining machine learning and optimization to guide electrocatalyst discovery for CO2 reduction and H2 evolution through density functional theory calculations.

    CAS  Article  Google Scholar 

  • 111.

    Pašti, I. A. et al. Atomically thin metal films on foreign substrates: from lattice mismatch to electrocatalytic activity. ACS Catal. 9, 3467–3481 (2019).

    Article  CAS  Google Scholar 

  • 112.

    Daelman, N., Capdevila-Cortada, M. & López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 18, 1215–1221 (2019). An article highlighting a new class of strong metal–support interactions exhibiting well-defined and dynamically interconnected charge states.

    CAS  Article  Google Scholar 

  • 113.

    Mitchell, S., Michels, N. L. & Pérez-Ramírez, J. From powder to technical body: the undervalued science of catalyst scale up. Chem. Soc. Rev. 42, 6094–6112 (2013).

    CAS  Article  Google Scholar 

  • 114.

    Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218 (2016).

    CAS  Article  Google Scholar 

  • 115.

    Zheng, Z. et al. Economizing production of diverse 2D layered metal hydroxides for efficient overall water splitting. Small 14, 1800759 (2018).

    Article  CAS  Google Scholar 

  • 116.

    Martín, A. J. & Pérez-Ramírez, J. Heading to distributed electrocatalytic conversion of small abundant molecules into fuels, chemicals, and fertilizers. Joule 3, 2602–2621 (2019).

    Article  CAS  Google Scholar 

  • 117.

    González-Garay, A. et al. Plant-to-planet analysis of CO2-based methanol processes. Energy Environ. Sci. 12, 3425–3436 (2019).

    Article  Google Scholar 

  • 118.

    Saadun, A. J. et al. Performance of metal-catalyzed hydrodebromination of dibromomethane analyzed by descriptors derived from statistical learning. ACS Catal. 10, 6129–6143 (2020).

    CAS  Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-020-00799-8

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?