Zephyrnet Logo

Modeling and therapeutic targeting of inflammation-induced hepatic insulin resistance using human iPSC-derived hepatocytes and macrophages – Nature Communications

Date:

  • Holmgren, G. et al. Characterization of human induced pluripotent stem cell-derived hepatocytes with mature features and potential for modeling metabolic diseases. Int. J. Mol. Sci. 21, 469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid, S. T. et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Investig. 120, 3127–3136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copps, K. D. & White, M. F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55, 2565–2582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen, M. C. & Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazotte, R. B., Silva, L. G. & Schiavon, F. P. M. Insulin resistance in the liver: deficiency or excess of insulin? Cell Cycle 13, 2494–2500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giri, B. et al. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomed. Pharmacother. 107, 306–328 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Sarwar, R., Pierce, N. & Koppe, S. Obesity and nonalcoholic fatty liver disease: current perspectives. Diabetes Metab. Syndr. Obes. 11, 533–542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, W. et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes 59, 347–357 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Lanthier, N. et al. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G107–16 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kim, D. H. et al. FoxO6-mediated IL-1β induces hepatic insulin resistance and age-related inflammation via the TF/PAR2 pathway in aging and diabetic mice. Redox Biol. 24, 101184 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tencerova, M. et al. Activated Kupffer cells inhibit insulin sensitivity in obese mice. FASEB J. 29, 2959–2969 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klover, P. J., Zimmers, T. A., Koniaris, L. G. & Mooney, R. A. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52, 2784–2789 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Senn, J. J., Klover, P. J., Nowak, I. A. & Mooney, R. A. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51, 3391–3399 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Nov, O. et al. Interleukin-1beta may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation. Endocrinology 151, 4247–4256 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Sanyal, A. J. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 16, 377–386 (2019).

    Article  PubMed  Google Scholar 

  • Molinaro, A., Becattini, B. & Solinas, G. Insulin signaling and glucose metabolism in different hepatoma cell lines deviate from hepatocyte physiology toward a convergent aberrant phenotype. Sci. Rep. 10, 12031 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson, M. D., Lehrer, M. & Khetani, S. R. Hormone and drug-mediated modulation of glucose metabolism in a microscale model of the human liver. Tissue Eng. Part C. Methods 21, 716–725 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson, M. D., Ballinger, K. R. & Khetani, S. R. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes. Sci. Rep. 6, 28178 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozyra, M. et al. Human hepatic 3D spheroids as a model for steatosis and insulin resistance. Sci. Rep. 8, 14297 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Blaszkiewicz, J. & Duncan, S. A. Advancements in disease modeling and drug discovery using iPSC-derived hepatocyte-like cells. Genes 13, 573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ang, L. T. et al. A roadmap for human liver differentiation from pluripotent stem cells. Cell Rep. 22, 2190–2205 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, X. et al. Hepatocyte-like cells derived from human induced pluripotent stem cells using small molecules: implications of a transcriptomic study. Stem Cell Res. Ther. 11, 393 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallanna, S. K. & Duncan, S. A. Differentiation of hepatocytes from pluripotent stem cells. Curr. Protoc. Stem Cell Biol. 26, 1G.4.1–1G.4.13 (2013).

    Article  PubMed  Google Scholar 

  • Ferris, H. A. & Kahn, C. R. New mechanisms of glucocorticoid-induced insulin resistance: make no bones about it. J. Clin. Investig. 122, 3854–3857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozance, P. J. et al. Effects of chronic hyperinsulinemia on metabolic pathways and insulin signaling in the fetal liver. Am. J. Physiol. Endocrinol. Metab. 319, E721–E733 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritsche, L. et al. Insulin-induced serine phosphorylation of IRS-2 via ERK1/2 and mTOR: studies on the function of Ser675 and Ser907. Am. J. Physiol. Endocrinol. Metab. 300, E824–36 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Payankaulam, S., Raicu, A.-M. & Arnosti, D. N. Transcriptional regulation of INSR, the insulin receptor gene. Genes 10, 984 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karim, S., Adams, D. H. & Lalor, P. F. Hepatic expression and cellular distribution of the glucose transporter family. World J. Gastroenterol. 18, 6771–6781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinaro, A. et al. Insulin-driven PI3K-AKT signaling in the hepatocyte is mediated by redundant PI3Kα and PI3Kβ activities and is promoted by RAS. Cell Metab. 29, 1400–1409.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Dong, X. C. et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 8, 65–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Um, S. H., D’Alessio, D. & Thomas, G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 3, 393–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Petersen, M. C., Vatner, D. F. & Shulman, G. I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13, 572–587 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beurel, E., Grieco, S. F. & Jope, R. S. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharm. Ther. 148, 114–131 (2015).

    Article  CAS  Google Scholar 

  • Collin de l’Hortet, A. et al. Generation of human fatty livers using custom-engineered induced pluripotent stem cells with modifiable SIRT1 metabolism. Cell Metab. 30, 385–401.e9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouchi, R. et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 30, 374–384.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreitzer, F. R. et al. A robust method to derive functional neural crest cells from human pluripotent stem cells. Am. J. Stem Cells 2, 119–131 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo, K. et al. ACVR1R206H extends inflammatory responses in human induced pluripotent stem cell-derived macrophages. Bone 153, 116129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazankov, K. et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 16, 145–159 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya, K. et al. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat. Commun. 10, 2091 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Yu, R., Xiong, Y., Du, F. & Zhu, S. A vicious circle between insulin resistance and inflammation in nonalcoholic fatty liver disease. Lipids Health Dis. 16, 203 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Duwaerts, C. C. et al. Induced pluripotent stem cell-derived hepatocytes from patients with nonalcoholic fatty liver disease display a disease-specific gene expression profile. Gastroenterology 160, 2591–2594.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Kano, A., Watanabe, Y., Takeda, N., Aizawa, S. & Akaike, T. Analysis of IFN-gamma-induced cell cycle arrest and cell death in hepatocytes. J. Biochem. 121, 677–683 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Filliol, A. et al. RIPK1 protects from TNF-α-mediated liver damage during hepatitis. Cell Death Dis. 7, e2462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, X. et al. Paradoxical effects of short- and long-term interleukin-6 exposure on liver injury and repair. Hepatology 43, 474–484 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Knight, B., Lim, R., Yeoh, G. C. & Olynyk, J. K. Interferon-gamma exacerbates liver damage, the hepatic progenitor cell response and fibrosis in a mouse model of chronic liver injury. J. Hepatol. 47, 826–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Investig. 109, 1125–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yecies, J. L. et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14, 21–32 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z. et al. Causal relationships between NAFLD, T2D and obesity have implications for disease subphenotyping. J. Hepatol. 73, 263–276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yung, J. H. M. & Giacca, A. Role of c-Jun N-terminal kinase (JNK) in obesity and type 2 diabetes. Cells 9, 706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Chen, R., Wang, H. & Liang, F. Mechanisms linking inflammation to insulin resistance. Int. J. Endocrinol. 2015, 508409 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Straczkowski, M. et al. Changes in tumor necrosis factor-alpha system and insulin sensitivity during an exercise training program in obese women with normal and impaired glucose tolerance. Eur. J. Endocrinol. 145, 273–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Velikova, T. V., Kabakchieva, P. P., Assyov, Y. S. & Georgiev, T. А Targeting inflammatory cytokines to improve type 2 diabetes control. Biomed. Res. Int. 2021, 7297419 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • She, S. et al. Functional roles of chemokine receptor CCR2 and its ligands in liver disease. Front. Immunol. 13, 812431 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aronoff, S. L., Berkowitz, K., Shreiner, B. & Want, L. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr. 17, 183–190 (2004).

    Article  Google Scholar 

  • Titchenell, P. M., Chu, Q., Monks, B. R. & Birnbaum, M. J. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat. Commun. 6, 7078 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gaul, S. et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J. Hepatol. 74, 156–167 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Pantano, L. et al. Molecular characterization and cell type composition deconvolution of fibrosis in NAFLD. Sci. Rep. 11, 18045 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Suppli, M. P. et al. Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G462–G472 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Franko, A. et al. Dissociation of fatty liver and insulin resistance in I148M PNPLA3 carriers: differences in diacylglycerol (DAG) FA18:1 lipid species as a possible explanation. Nutrients 10, 1314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mota, M., Banini, B. A., Cazanave, S. C. & Sanyal, A. J. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 65, 1049–1061 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  ADS  PubMed  Google Scholar 

  • Basu, R., Chandramouli, V., Dicke, B., Landau, B. & Rizza, R. Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis. Diabetes 54, 1942–1948 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Krssak, M. et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 53, 3048–3056 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Magnusson, I., Rothman, D. L., Katz, L. D., Shulman, R. G. & Shulman, G. I. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Investig. 90, 1323–1327 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winnick, J. J. et al. Hepatic glycogen supercompensation activates AMP-activated protein kinase, impairs insulin signaling, and reduces glycogen deposition in the liver. Diabetes 60, 398–407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki, Y. et al. Metabolic control analysis of hepatic glycogen synthesis in vivo. Proc. Natl Acad. Sci. USA 117, 8166–8176 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott, L. W. et al. Tumor Necrosis Factor-alpha- and interleukin-1-induced cellular responses: coupling proteomic and genomic information. J. Proteome Res. 6, 2176–2185 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si-Tayeb, K. et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51, 297–305 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img