Zephyrnet Logo

Long non-coding RNA SNHG8 drives stress granule formation in tauopathies – Molecular Psychiatry

Date:

  • Bodea LG, Eckert A, Ittner LM, Piguet O, Götz J. Tau physiology and pathomechanisms in frontotemporal lobar degeneration. J Neurochem. 2016;138:71–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R. Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem. 2016;138:32–53.

    Article  CAS  PubMed  Google Scholar 

  • Van Swieten J, Spillantini MG. Hereditary frontotemporal dementia caused by Tau gene mutations. Brain Pathol 2007;17:63–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Zhang S, Tian X, Wu C. Mask mitigates MAPT- and FUS-induced degeneration by enhancing autophagy through lysosomal acidification. Autophagy. 2017;13:1924–38. https://doi.org/10.1080/15548627.2017.1362524.

  • Mahali S, Martinez R, King M, Verbeck A, Harari O, Benitez BA, et al. Defective proteostasis in induced pluripotent stem cell models of frontotemporal lobar degeneration. Transl Psychiatry. 2022;12:508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero B, Wang Y, Diaz A, Tasset I, Juste YR, Stiller B, et al. Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell. 2018;17:e12692. https://doi.org/10.1111/acel.12692. 2018

    Article  CAS  PubMed  Google Scholar 

  • Frost B, Bardai FH, Feany MB. Lamin dysfunction mediates neurodegeneration in tauopathies. Curr Biol. 2016;26:129–36. https://doi.org/10.1016/j.cub.2015.11.039. 2016.

    Article  CAS  PubMed  Google Scholar 

  • Tracy TE, Madero-Pérez J, Swaney DL, Chang TS, Moritz M, Konrad C, et al. Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration. Cell. 2022;185:712–28.e14. https://doi.org/10.1016/j.cell.2021.12.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradeepkiran JA, Hemachandra Reddy P. Defective mitophagy in Alzheimer’s disease. Ageing Res Rev. 2020;64:101191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simone R, Javad F, Emmett W, Wilkins OG, Almeida FL, Barahona-Torres N, et al. MIR-NATs repress MAPT translation and aid proteostasis in neurodegeneration. Nature. 2021;594:117–23. https://doi.org/10.1038/s41586-021-03556-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Yan H, Teng Y, Wang Q, Yang P, Zhang L, et al. Long non-coding RNA 00507/miRNA-181c-5p/TTBK1/MAPT axis regulates tau hyperphosphorylation in Alzheimer’s disease. J Gene Med. 2020;22:3268. https://doi.org/10.1002/jgm.3268.

    Article  CAS  Google Scholar 

  • Jiang S, Wen N, Li Z, Dube U, Del Aguila J, Budde J, et al. Integrative system biology analyses of CRISPR-edited iPSC-derived neurons and human brains reveal deficiencies of presynaptic signaling in FTLD and PSP. Transl Psychiatry. 2018;8:265. https://doi.org/10.1038/s41398-018-0319-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowles KR, Silva MC, Whitney K, Bertucci T, Berlind JE, Lai JD, et al. ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids. Cell. 2021;184:4547–63.e17. https://doi.org/10.1016/j.cell.2021.07.003.

  • Hernandez I, Luna G, Rauch JN, Reis SA, Giroux M, Karch CM, et al. A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. Sci Transl Med. 2019;11. https://doi.org/10.1126/scitranslmed.aat3005.

  • Minaya MA, Mahali S, Iyer AK, Eteleeb AM, Martinez R, Huang G, et al. Conserved gene signatures shared among MAPT mutations reveal defects in calcium signaling. Front Mol Biosci. 2023;10:1051494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oo JA, Brandes RP, Leisegang MS. Long non-coding RNAs: novel regulators of cellular physiology and function. Pflug Arch Eur J Physiol. 2022;474:191–204.

    Article  CAS  Google Scholar 

  • Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, et al. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci. 2019;20:5573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol Cell. 2017;68:808–20.e5. https://doi.org/10.1016/j.molcel.2017.10.015.

  • Van Treeck B, Protter DSW, Matheny T, Khong A, Link CD, Parker R. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc Natl Acad Sci USA. 2018;115:2734–9. https://doi.org/10.1073/pnas.1800038115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karch CM, Kao AW, Karydas A, Onanuga K, Martinez R, Argouarch A, et al. A comprehensive resource for induced pluripotent stem cells from patients with primary tauopathies. Stem Cell Rep. 2019;13:939–55. https://doi.org/10.1016/j.stemcr.2019.09.006.

  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. https://doi.org/10.1016/j.cell.2006.07.024.

  • Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci USA. 2011;108:14234–9. https://doi.org/10.1073/pnas.1103509108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato C, Barthélemy NR, Mawuenyega KG, Patterson BW, Gordon BA, Jockel-Balsarotti J, et al. Tau kinetics in neurons and the human central nervous system. Neuron. 2018;97:1284–98.e7. https://doi.org/10.1016/j.neuron.2018.02.015.

  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9. https://doi.org/10.1038/nmeth.4197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson L. ggplot2: elegant graphics for data analysis by WICKHAM, H. Biometrics. 2011;67:678–9. https://doi.org/10.1111/j.1541-0420.2011.01616.x.

  • Chen J, Zhang J, Gao Y, Li Y, Feng C, Song C, et al. LncSEA: a platform for long non-coding RNA related sets and enrichment analysis. Nucleic Acids Res. 2021;49:D969–80. https://doi.org/10.1093/nar/gkaa806.

    Article  CAS  PubMed  Google Scholar 

  • Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, et al. GeneMANIA cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics. 2010;26:2927–8. https://doi.org/10.1093/bioinformatics/btq562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armaos A, Colantoni A, Proietti G, Rupert J, Tartaglia GG. CatRAPID omics v2.0: Going deeper and wider in the prediction of protein-RNA interactions. Nucleic Acids Res. 2021;49:W72–9. https://doi.org/10.1093/nar/gkab393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellucci M, Agostini F, Masin M, Tartaglia GG. Predicting protein associations with long noncoding RNAs. Nat Methods. 2011;8:444–5.

    Article  CAS  PubMed  Google Scholar 

  • Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68:1067–81. https://doi.org/10.1016/j.neuron.2010.11.030.

  • Karch CM, Jeng AT, Goate AM. Extracellular tau levels are influenced by variability in tau that is associated with tauopathies. J Biol Chem. 2012;287:42751–62. https://doi.org/10.1074/jbc.M112.380642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bierhoff H. Analysis of lncRNA-protein interactions by RNA-protein pull-down assays and RNA immunoprecipitation (RIP). Methods Mol Biol. 2018;1686:241–50.

    Article  CAS  PubMed  Google Scholar 

  • Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E, SantaCruz K, et al. Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci. 2005;25:10637–47. https://doi.org/10.1523/JNEUROSCI.3279-05.2005.

  • Matarin M, Salih DA, Yasvoina M, Cummings DM, Guelfi S, Liu W, et al. A Genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep. 2015;10:633–44. https://doi.org/10.1016/j.celrep.2014.12.041.

    Article  CAS  PubMed  Google Scholar 

  • Allen M, Carrasquillo MM, Funk C, Heavner BD, Zou F, Younkin CS, et al. Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases. Sci Data. 2016;3:160089. https://doi.org/10.1038/sdata.2016.89.

  • Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell. 2004;15:5383–98. https://doi.org/10.1091/mbc.E04-08-0715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedersha N, Anderson P. Mammalian stress granules and processing bodies. Methods Enzymol. 2007;431:61–81.

    Article  CAS  PubMed  Google Scholar 

  • Hanson KK, Mair GR. Stress granules and plasmodium liver stage infection. Biol Open. 2014;3:103–7. https://doi.org/10.1242/bio.20136833.

    Article  PubMed  Google Scholar 

  • Zhang K, Daigle JG, Cunningham KM, Coyne AN, Ruan K, Grima JC, et al. Stress granule assembly disrupts nucleocytoplasmic transport. Cell. 2018;173:958–971.e17. https://doi.org/10.1016/j.cell.2018.03.025.

  • Brunello CA, Yan X, Huttunen HJ. Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules. Sci Rep. 2016;6:30498. https://doi.org/10.1038/srep30498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura M, Shiozawa S, Tsuboi D, Amano M, Watanabe H, Maeda S, et al. Pathological progression induced by the frontotemporal dementia-associated R406W tau mutation in patient-derived iPSCs. Stem Cell Rep. 2019;13:684–99. https://doi.org/10.1016/j.stemcr.2019.08.011.

  • Capano LS, Sato C, Ficulle E, Yu A, Horie K, Barthelemy NR, et al. Recapitulation of endogenous 4R tau expression and formation of insoluble tau in directly reprogrammed human neurons. SSRN Electron J. 2021. https://doi.org/10.2139/ssrn.3899434.

  • Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.

    Article  CAS  PubMed  Google Scholar 

  • Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wen L, Zhu H. Unveiling the hidden function of long non-coding RNA by identifying its major partner-protein. Cell Biosci. 2015;5:59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ash PEA, Lei S, Shattuck J, Boudeau S, Carlomagno Y, Medalla M, et al. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc Natl Acad Sci USA. 2021;118. https://doi.org/10.1073/pnas.2014188118.

  • Gerstberger S, Hafner M, Ascano M, Tuschl T. Evolutionary conservation and expression of human RNA-Binding proteins and their role in human genetic disease. Adv Exp Med Biol. 2014;825:1–55. https://doi.org/10.1007/978-1-4939-1221-6_1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latimer CS, Keene CD, Kraemer BC, Liachko NF. TDP-43 promotes pathological tau phosphorylation and selective neurotoxicity in C. elegans. Alzheimers Dement. 2021;17. https://doi.org/10.1002/alz.058137.

  • Montalbano M, McAllen S, Cascio FL, Sengupta U, Garcia S, Bhatt N, et al. TDP-43 and tau oligomers in Alzheimer’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Neurobiol Dis. 2020;146:105130. https://doi.org/10.1016/j.nbd.2020.105130.

  • Urwin H, Josephs KA, Rohrer JD, MacKenzie IR, Neumann M, Authier A, et al. FUS pathology defines the majority of tau-and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathol. 2010;120:33–41. https://doi.org/10.1007/s00401-010-0698-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lester E, Ooi FK, Bakkar N, Ayers J, Woerman AL, Wheeler J, et al. Tau aggregates are RNA-protein assemblies that mislocalize multiple nuclear speckle components. Neuron. 2021;109:1675–91.e9. https://doi.org/10.1016/j.neuron.2021.03.026.

  • Lennox AL, Hoye ML, Jiang R, Johnson-Kerner BL, Suit LA, Venkataramanan S, et al. Pathogenic DDX3X mutations impair RNA metabolism and neurogenesis during fetal cortical development. Neuron. 2020;106:404–20.e8. https://doi.org/10.1016/j.neuron.2020.01.042.

  • Vanderweyde T, Apicco DJ, Youmans-Kidder K, Ash PEA, Cook C, Lummertz da Rocha E, et al.Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep. 2016;15:1455–66. https://doi.org/10.1016/j.celrep.2016.04.045.

  • Maziuk BF, Apicco DJ, Cruz AL, Jiang L, Ash PEA, da Rocha EL, et al. RNA binding proteins co-localize with small tau inclusions in tauopathy. Acta Neuropathol Commun. 2018;6:71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patani R, Lewis PA, Trabzuni D, Puddifoot CA, Wyllie DJA, Walker R, et al. Investigating the utility of human embryonic stem cell-derived neurons to model ageing and neurodegenerative disease using whole-genome gene expression and splicing analysis. J Neurochem. 2012;122:738–51. https://doi.org/10.1111/j.1471-4159.2012.07825.x.

  • Sposito T, Preza E, Mahoney CJ, Setó-Salvia N, Ryan NS, Morris HR, et al. Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT. Hum Mol Genet. 2015;24:5260–9. https://doi.org/10.1093/hmg/ddv246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hefti MM, Farrell K, Kim SH, Bowles KR, Fowkes ME, Raj T, et al. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development. PLoS One. 2018;13:e0195771. https://doi.org/10.1371/journal.pone.0195771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piatnitskaia S, Takahashi M, Kitaura H, Katsuragi Y, Kakihana T, Zhang L, et al. USP10 is a critical factor for Tau-positive stress granule formation in neuronal cells. Sci Rep. 2019;9:10591. https://doi.org/10.1038/s41598-019-47033-7. 2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcelo A, Koppenol R, de Almeida LP, Matos CA, Nóbrega C. Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation? Cell Death Dis. 2021;12:592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glasauer SMK, Goderie SK, Rauch JN, Guzman E, Audouard M, Bertucci T, et al. Human tau mutations in cerebral organoids induce a progressive dyshomeostasis of cholesterol. Stem Cell Rep. 2022;17:2127–40.

    Article  CAS  Google Scholar 

  • Gunawardana CG, Mehrabian M, Wang X, Mueller I, Lubambo IB, Jonkman JEN, et al. The human tau interactome: binding to the ribonucleoproteome, and impaired binding of the proline-to-leucine mutant at position 301 (P301L) to chaperones and the proteasome. Mol Cell Proteom. 2015;14:3000–14. https://doi.org/10.1074/mcp.M115.050724.

    Article  CAS  Google Scholar 

  • Maziuk B, Ballance HI, Wolozin B. Dysregulation of RNA binding protein aggregation in neurodegenerative disorders. Front Mol Neurosci. 2017;10:89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–3. https://doi.org/10.1126/science.1134108.

    Article  CAS  PubMed  Google Scholar 

  • Meier S, Bell M, Lyons DN, Rodriguez-Rivera J, Ingram A, Fontaine SN, et al. Pathological tau promotes neuronal damage by impairing ribosomal function and decreasing protein synthesis. J Neurosci. 2016;36:1001–7. https://doi.org/10.1523/JNEUROSCI.3029-15.2016.

  • McMillan PJ, Benbow SJ, Uhrich R, Saxton A, Baum M, Strovas T, et al. Tau-RNA complexes inhibit microtubule polymerization and drive disease-relevant conformation change. Brain. 2023;146:3206–20. https://doi.org/10.1093/brain/awad032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahboubi H, Stochaj U. Cytoplasmic stress granules: dynamic modulators of cell signaling and disease. Biochim. Biophys. Acta Mol Basis Dis. 2017;1863:884–95.

    Article  CAS  PubMed  Google Scholar 

  • Wolozin B, Ivanov P. Stress granules and neurodegeneration. Nat Rev Neurosci. 2019;20:649–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan X, Yan Y, Xue M. Small nucleolar RNA host gene 8: a rising star in the targets for cancer therapy. Biomed Pharmacother. 2021;139:111622.

    Article  CAS  PubMed  Google Scholar 

  • Williams GT, Farzaneh F. Are snoRNAs and snoRNA host genes new players in cancer. Nat Rev Cancer. 2012;12:84–88. https://doi.org/10.1038/nrc3195.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47. https://doi.org/10.1523/JNEUROSCI.1860-14.

  • Zou C, Liao J, Hu D, Su Y, Lin H, Lin K, et al. SNHG8 promotes the progression of Epstein–Barr virus-associated gastric cancer via sponging miR-512-5p and targeting TRIM28. Front Oncol. 2021;11:734694. https://doi.org/10.3389/fonc.2021.734694.

  • Yu B, Wang B, Wu Z, Wu C, Ling J, Gao X, et al. LncRNA SNHG8 promotes proliferation and inhibits apoptosis of diffuse large B-cell lymphoma via sponging miR-335-5p. Front Oncol. 2021;11:650287. https://doi.org/10.3389/fonc.2021.650287.

  • Miao W, Lu T, Liu X, Yin W, Zhang H. LncRNA SNHG8 induces ovarian carcinoma cells cellular process and stemness through Wnt/β-catenin pathway. Cancer Biomark. 2020;28:459–71. https://doi.org/10.3233/CBM-190640.

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Liu Y, Wang Z, Zhang S, Yang Y, Zhu Y, et al. LncRNA Snhg8 attenuates microglial inflammation response and blood–brain barrier damage in ischemic stroke through regulating miR-425-5p mediated SIRT1/NF-κB signaling. J Biochem Mol Toxicol. 2021;35:22724. https://doi.org/10.1002/jbt.22724.

    Article  CAS  Google Scholar 

  • Wang C, Yang Q, Han Y, Liu H, Wang Y, Huang Y, et al. A reduced level of the long non-coding RNA SNHG8 activates the NF-kappaB pathway by releasing functional HIF-1alpha in a hypoxic inflammatory microenvironment. Stem Cell Res Ther. 2022;13:229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Protter DSW, Parker R. Principles and properties of stress granules. Trends Cell Biol. 2016;26:668–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img