Zephyrnet Logo

Honeybee comb-inspired stiffness gradient-amplified catapult for solid particle repellency – Nature Nanotechnology

Date:

  • Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997).

    Article  CAS  Google Scholar 

  • Bohn, H. F. & Federle, W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Natl Acad. Sci. USA 101, 14138–14143 (2004).

    Article  CAS  Google Scholar 

  • Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    Article  CAS  Google Scholar 

  • Gao, X. & Jiang, L. Water-repellent legs of water striders. Nature 432, 36–36 (2004).

    Article  CAS  Google Scholar 

  • Hu, D. L., Chan, B. & Bush, J. W. The hydrodynamics of water strider locomotion. Nature 424, 663–666 (2003).

    Article  CAS  Google Scholar 

  • Parker, A. R. & Lawrence, C. R. Water capture by a desert beetle. Nature 414, 33–34 (2001).

    Article  CAS  Google Scholar 

  • Wisdom, K. M. et al. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proc. Natl Acad. Sci. USA 110, 7992–7997 (2013).

    Article  CAS  Google Scholar 

  • Bintein, P.-B., Bense, H., Clanet, C. & Quéré, D. Self-propelling droplets on fibres subject to a crosswind. Nat. Phys. 15, 1027–1032 (2019).

    Article  CAS  Google Scholar 

  • Johnson, K. L., Kendall, K. & Roberts, A. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971).

    Article  CAS  Google Scholar 

  • ElSherbini, A. & Jacobi, A. Retention forces and contact angles for critical liquid drops on non-horizontal surfaces. J. Colloid Interface Sci. 299, 841–849 (2006).

    Article  CAS  Google Scholar 

  • Extrand, C. & Gent, A. Retention of liquid drops by solid surfaces. J. Colloid Interface Sci. 138, 431–442 (1990).

    Article  CAS  Google Scholar 

  • Mukherjee, R., Berrier, A. S., Murphy, K. R., Vieitez, J. R. & Boreyko, J. B. How surface orientation affects jumping-droplet condensation. Joule 3, 1360–1376 (2019).

    Article  Google Scholar 

  • Jespersen, N. D. & Hyslop, A. Chemistry: The Molecular Nature of Matter (John Wiley, 2021).

  • Sayyah, A., Horenstein, M. N., Mazumder, M. K. & Ahmadi, G. Electrostatic force distribution on an electrodynamic screen. J. Electrostat. 81, 24–36 (2016).

    Article  Google Scholar 

  • Hao, K., Tian, Z. X., Wang, Z. C. & Huang, S. Q. Pollen grain size associated with pollinator feeding strategy. Proc. Biol. Sci. 287, 20201191 (2020).

    Google Scholar 

  • Foose, A., Westwick, R., Vengarai, M. & Rittschof, C. The survival consequences of grooming in the honey bee Apis mellifera. Insectes Soc. 69, 279–287 (2022).

    Article  Google Scholar 

  • Free, J. B. Insect Pollination of Crops (Academic Press, 1970).

  • Fard, G. G., Zhang, D., Jimenez, F. L. & Peleg, O. Crystallography of honeycomb formation under geometric frustration. Proc. Natl Acad. Sci. USA 119, e2205043119 (2022).

    Article  CAS  Google Scholar 

  • Mackenzie, D. Proving the perfection of the honeycomb. Science 285, 1338–1339 (1999).

    Article  CAS  Google Scholar 

  • Esch, H. E., Zhang, S., Srinivasan, M. V. & Tautz, J. Honeybee dances communicate distances measured by optic flow. Nature 411, 581–583 (2001).

    Article  CAS  Google Scholar 

  • Seeley, T. D. et al. Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science 335, 108–111 (2012).

    Article  CAS  Google Scholar 

  • Dong, S., Lin, T., Nieh, J. C. & Tan, K. Social signal learning of the waggle dance in honey bees. Science 379, 1015–1018 (2023).

    Article  CAS  Google Scholar 

  • Lechantre, A. et al. Essential role of papillae flexibility in nectar capture by bees. Proc. Natl Acad. Sci. USA 118, e2025513118 (2021).

    Article  CAS  Google Scholar 

  • Haupt, S. S. Antennal sucrose perception in the honey bee (Apis mellifera L.): behaviour and electrophysiology. J. Comp. Physiol. A 190, 735–745 (2004).

    Article  CAS  Google Scholar 

  • Schönitzer, K. & Renner, M. The function of the antenna cleaner of the honeybee (Apis mellifica). Apidologie 15, 23–32 (1984).

    Article  Google Scholar 

  • Rebora, M., Salerno, G., Piersanti, S., Michels, J. & Gorb, S. Structure and biomechanics of the antennal grooming mechanism in the southern green stink bug Nezara viridula. J. Insect Physiol. 112, 57–67 (2019).

    Article  CAS  Google Scholar 

  • Hackmann, A., Delacave, H., Robinson, A., Labonte, D. & Federle, W. Functional morphology and efficiency of the antenna cleaner in Camponotus rufifemur ants. R. Soc. Open Sci. 2, 150129 (2015).

    Article  Google Scholar 

  • Robinson, W. H. “Antennal grooming and movement behaviour in the German cockroach, Blattella germanica (L.),” in Proceedings of the Second International Conference on Urban Pests (ed. Wildey, K.) 361–369 (Exeter Press, 1996).

  • Longo, S. et al. Beyond power amplification: latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems. J. Exp. Biol. 222, jeb197889 (2019).

    Article  Google Scholar 

  • Sanz Saiz, C., Polo Martínez, J. & Martín Chivelet, N. Influence of pollen on solar photovoltaic energy: literature review and experimental testing with pollen. Appl. Sci. 10, 4733 (2020).

    Article  Google Scholar 

  • Noblin, X. et al. The fern sporangium: a unique catapult. Science 335, 1322 (2012).

    Article  CAS  Google Scholar 

  • Edwards, J., Whitaker, D., Klionsky, S. & Laskowski, M. J. A record-breaking pollen catapult. Nature 435, 164–164 (2005).

    Article  CAS  Google Scholar 

  • Ito, S. & Gorb, S. N. Attachment-based mechanisms underlying capture and release of pollen grains. J. R. Soc. Interface 16, 20190269 (2019).

    Article  Google Scholar 

  • Michels, J. & Gorb, S. N. Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy. J. Microsc. 245, 1–16 (2012).

    Article  CAS  Google Scholar 

  • Peisker, H., Michels, J. & Gorb, S. N. Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat. Commun. 4, 1661 (2013).

    Article  Google Scholar 

  • Gorb, S. N. & Filippov, A. E. Fibrillar adhesion with no clusterisation: functional significance of material gradient along adhesive setae of insects. Beilstein J. Nanotechnol. 5, 837–845 (2014).

    Article  CAS  Google Scholar 

  • Patek, S. N., Korff, W. & Caldwell, R. L. Deadly strike mechanism of a mantis shrimp. Nature 428, 819–820 (2004).

    Article  CAS  Google Scholar 

  • Patek, S., Baio, J., Fisher, B. & Suarez, A. Multifunctionality and mechanical origins: ballistic jaw propulsion in trap-jaw ants. Proc. Natl Acad. Sci. USA 103, 12787–12792 (2006).

    Article  CAS  Google Scholar 

  • Büsse, S., Koehnsen, A., Rajabi, H. & Gorb, S. N. A controllable dual-catapult system inspired by the biomechanics of the dragonfly larvae’s predatory strike. Sci. Robot. 6, eabc8170 (2021).

    Article  Google Scholar 

  • Noblin, X., Yang, S. & Dumais, J. Surface tension propulsion of fungal spores. J. Exp. Biol. 212, 2835–2843 (2009).

    Article  Google Scholar 

  • Luo, D. et al. Autonomous self-burying seed carriers for aerial seeding. Nature 614, 463–470 (2023).

    Article  CAS  Google Scholar 

  • Ilton, M. et al. The principles of cascading power limits in small, fast biological and engineered systems. Science 360, 397 (2018).

    Article  CAS  Google Scholar 

  • Hawkes, E. W. et al. Engineered jumpers overcome biological limits via work multiplication. Nature 604, 657–661 (2022).

    Article  CAS  Google Scholar 

  • Son, K., Guasto, J. S. & Stocker, R. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9, 494–498 (2013).

    Article  CAS  Google Scholar 

  • Majidi, C. Soft robotics: a perspective—current trends and prospects for the future. Soft Robot. 1, 5–11 (2014).

    Article  Google Scholar 

  • Feldmann, D., Das, R. & Pinchasik, B. E. How can interfacial phenomena in nature inspire smaller robots. Adv. Mater. Interfaces 8, 2001300 (2021).

    Article  CAS  Google Scholar 

  • Li, C., Gorb, S. N. & Rajabi, H. Cuticle sclerotization determines the difference between the elastic moduli of locust tibiae. Acta Biomater. 103, 189–195 (2020).

    Article  CAS  Google Scholar 

  • Vassiliadis, S., Kallivretaki, A. & Provatidis, C. Mechanical modelling of multifilament twisted yarns. Fibers Polym. 11, 89–96 (2010).

    Article  CAS  Google Scholar 

  • Rao, B. N. & Rao, G. V. Large deflections of a nonuniform cantilever beam with end rotational load. Forsch. Ingenieurwes. A 54, 24–26 (1988).

    Article  Google Scholar 

  • Shvartsman, B. Large deflections of a cantilever beam subjected to a follower force. J. Sound Vib. 304, 969–973 (2007).

    Article  Google Scholar 

  • Kaliske, M. & Rothert, H. Damping characterization of unidirectional fibre reinforced polymer composites. Compos. Eng. 5, 551–567 (1995).

    Article  Google Scholar 

  • Rajabi, H. et al. Both stiff and compliant: morphological and biomechanical adaptations of stick insect antennae for tactile exploration. J. R. Soc. Interface 15, 20180246 (2018).

    Article  Google Scholar 

  • Zabaras, N. & Pervez, T. Viscous damping approximation of laminated anisotropic composite plates using the finite element method. Comput. Methods Appl. Mech. Eng. 81, 291–316 (1990).

    Article  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img