Zephyrnet Logo

High-efficiency upconversion process in cobalt and neodymium doped graphene QDs for biomedical applications – Scientific Reports

Date:

  • Xu, Y. et al. A novel controllable molecularly imprinted drug delivery system based on the photothermal effect of graphene oxide quantum dots. J. Mater. Sci. 54, 9124–9139 (2019).

    Article  ADS  CAS  Google Scholar 

  • Nene, L. C., Managa, M. & Nyokong, T. Photo-physicochemical properties and in vitro photodynamic therapy activity of morpholine-substituted Zinc(II)-Phthalocyanines π–π stacked on biotinylated graphene quantum dots. Dyes Pigment 165, 488–498 (2019).

    Article  CAS  Google Scholar 

  • Yue, J. et al. Facile design and development of photoluminescent graphene quantum dots grafted dextran/glycol-polymeric hydrogel for thermoresponsive triggered delivery of buprenorphine on pain management in tissue implantation. J. Photochem. Photobiol. B. 197, 111530 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Ghafary, S. M., Nikkhah, M., Hatamie, S. & Hosseinkhani, S. Simultaneous gene delivery and tracking through preparation of photo-luminescent nanoparticles based on graphene quantum dots and chimeric peptides. Sci. Rep. 7, 9552 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Havanur, S. et al. Poly(N,N-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice. Mater. Sci. Eng., C. 105, 110094 (2019).

    Article  CAS  Google Scholar 

  • Ju, J. & Chen, W. Graphene quantum dots as fluorescence probes for sensing metal ions: Synthesis and applications. Curr. Org. Chem. 19, 1150–1162 (2015).

    Article  CAS  Google Scholar 

  • Fan, L. et al. Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 101, 192 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Ju, J. & Chen, W. In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem. 87, 1903–1910 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. et al. Sequence-designed peptide nanofibers bridged conjugation of graphene quantum dots with graphene oxide for high-performance electrochemical hydrogen peroxide biosensor. Adv. Mater. Interfaces 4, 1600895 (2017).

    Article  Google Scholar 

  • Soleymani, J., Hasanzadeh, M., Somi, M. H., Ozkan, S. A. & Jouyban, A. Targeting and sensing of some cancer cells using folate bioreceptor functionalized nitrogen-doped graphene quantum dots. Int. J. Biol. Macromol. 118, 1021–1034 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. et al. A novel label-free electrochemical immune-sensor based on functionalized nitrogen-doped graphene quantum dots for carcinoembryonic antigen detection. Biosens. Bioelectron. 90, 31–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Landry, M. P. et al. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nat. Nanotechnol. 12, 368–377 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, H. et al. Preparation and biodistribution of 131I-labeled graphene quantum dots. J. Radioanal. Nucl. Chem. 316, 685–690 (2018).

    Article  CAS  Google Scholar 

  • Rajender, G., Goswami, U. & Giri, P. K. Solvent-dependent synthesis of edge-controlled graphene quantum dots with high photoluminescence quantum yield and their application in confocal imaging of cancer cells. J. Colloid Interface Sci. 541, 387–398 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang, Q. et al. Cancer-targeting graphene quantum dots: Fluorescence quantum yields, stability, and cell selectivity. Adv. Funct. Mater. 29, 1805860 (2019).

    Article  Google Scholar 

  • Wang, L. et al. Industrial production of ultra-stable sulfonated graphene quantum dots for Golgi apparatus imaging. J. Mater. Chem. B 5, 5355–5361 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Kundu, S. et al. Enhancing the efficiency of DSSCs by the modification of TiO2 photoanodes using N, F and S-codoped graphene quantum dots. Electrochim. Acta. 242, 337–343 (2017).

    Article  CAS  Google Scholar 

  • Pan, D., Zhang, J., Li, Z. & Wu, M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734–738 (2010).

    Article  PubMed  Google Scholar 

  • Yao, X. et al. Graphene Quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 13, 1602225 (2017).

    Article  Google Scholar 

  • Chung, S., Revia, R. A. & Zhang, M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 33, e1904362 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Alegret, N., Criado, A. & Prato, M. Recent advances of graphene-based hybrids with magnetic nanoparticles for biomedical applications. Curr. Top. Med. Chem. 24, 529–536 (2017).

    Article  CAS  Google Scholar 

  • Justin, R. et al. Photoluminescent and superparamagnetic reduced graphene oxide–iron oxide quantum dots for dual-modality imaging, drug delivery, and photothermal therapy. Carbon 97, 54–70 (2016).

    Article  CAS  Google Scholar 

  • Kuo, W. S. et al. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials 120, 185–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Guo, M. et al. Ruthenium nitrosyl functionalized graphene quantum dots as an efficient nano platform for NIR-light-controlled and mitochondria-targeted delivery of nitric oxide combined with photothermal therapy. Chem. Commun. 53, 3253–3256 (2017).

    Article  CAS  Google Scholar 

  • Xuan, Y. et al. Targeting N-doped graphene quantum dots with high photothermal conversion efficiency for dual-mode imaging and therapy in vitro. Nanotechnology 29, 355101 (2018).

    Article  ADS  PubMed  Google Scholar 

  • Fang, J. et al. Graphene quantum dots-gated hollow mesoporous carbon nano platform for targeting drug delivery and synergistic chemo-photothermal therapy. Int. J. Nanomed. 13, 5991–6007 (2018).

    Article  CAS  Google Scholar 

  • Sun, H., Gao, N., Dong, K., Ren, J. & Qu, X. Graphene quantum dots-bandaids used for wound disinfection. ACS Nano 8, 6202–6210 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Biswas, A. et al. Oxidant mediated one-step complete conversion of multi-walled carbon nanotubes to graphene quantum dots and their bioactivity against mammalian and bacterial cells. J. Mater. Chem. B 5, 785–796 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Luo, Y. et al. Enhanced photocatalytic activity of sulfur-doped graphene quantum dots decorated with TiO2 nanocomposites. Mater. Res. Bull. 97, 428–435 (2018).

    Article  CAS  Google Scholar 

  • Ahmed, B. et al. Facile synthesis and photophysics of graphene quantum dots. J. Photochem. Photobiol. A 364, 671–678 (2018).

    Article  CAS  Google Scholar 

  • Wu, C. et al. Construction of upconversion nitrogen-doped graphene quantum dots modified BiVO4 photocatalyst with enhanced visible-light photocatalytic activity. Ceram. Int. 45, 2088–2096 (2019).

    Article  CAS  Google Scholar 

  • Sun, L. et al. Role of Pyridinic-N for nitrogen-doped graphene quantum dots in oxygen reaction reduction. J. Colloid Interface Sci. 508, 154–158 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sajjadi, S., Khataee, A. & Kamali, M. Sonocatalytic degradation of methylene blue by a novel graphene quantum dots anchored CdSe nanocatalyst. Ultrason. Sonochem. 39, 676–685 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Xu, T. et al. Graphitic carbon nitride co-modified by zinc phthalocyanine and graphene quantum dots for the efficient photocatalytic degradation of refractory contaminants. Appl. Catal. B. 244, 96–106 (2019).

    Article  CAS  Google Scholar 

  • Wang, C. et al. In-situ synthesis and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite. Chem. Eng. J. 327, 774–782 (2017).

    Article  CAS  Google Scholar 

  • Yao, Y., Guo, Y., Du, W., Tong, X. & Zhang, X. In situ synthesis of sulfur-doped graphene quantum dots decorated carbon nanoparticles hybrid as metal-free electrocatalyst for the oxygen reduction reaction. J. Mater. Sci. Mater. Electron. 29, 17695–17705 (2018).

    Article  CAS  Google Scholar 

  • Riaz, R., Ali, M., Anwer, H., Ko, M. J. & Jeong, S. H. Highly porous self-assembly of nitrogen-doped graphene quantum dots over reduced graphene sheets for the photo-electrocatalytic electrode. J. Colloid Interface Sci. 557, 174–184 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Majumder, T., Dhar, S., Chakraborty, P., Debnath, K. & Mondal, S. P. Advantages of ZnO nanotaper photoanodes in photoelectrochemical cells and graphene quantum dot sensitized solar cell applications. J. Electroanal. Chem. 813, 92–101 (2018).

    Article  CAS  Google Scholar 

  • Huang, Y. et al. Graphene quantum dots-induced morphological changes in CuCo2S4 Nanocomposites for supercapacitor electrodes with enhanced performance. Appl. Surf. Sci. 463, 498–503 (2019).

    Article  ADS  CAS  Google Scholar 

  • Qian, J. et al. Tailoring the electronic properties of graphene quantum dots by P doping and their enhanced performance in a metal-free composite photocatalyst. J. Phys. Chem. C 122, 349–358 (2018).

    Article  CAS  Google Scholar 

  • Liu, T. et al. A graphene quantum dot decorated SrRuO3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells. J. Mater. Chem. A. 5, 17848–17855 (2017).

    Article  CAS  Google Scholar 

  • Faridbod, F. & Sanati, A. L. Graphene quantum dots in electrochemical sensors/biosensors. Curr. Anal. Chem. 15, 103–123 (2018).

    Article  Google Scholar 

  • Fan, Z., Li, S., Yuan, F. & Fan, L. Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Adv. 5, 19773–19789 (2015).

    Article  ADS  CAS  Google Scholar 

  • Hasanzadeh, M. & Shadjou, N. What are the reasons for the low use of graphene quantum dots in the immune-sensing of cancer biomarkers? Mater. Sci. Eng. C 71, 1313–1326 (2017).

    Article  CAS  Google Scholar 

  • Mansuriya, B. D. Altintas, graphene quantum dot-based electrochemical immunosensors for biomedical applications. Materials 13(1), 96 (2020).

    Article  ADS  CAS  Google Scholar 

  • Singh, A. K., Singh, R. S. & Singh, A. K. Recent developments in chemical doping of graphene using experimental approaches and its applications. Adv. Eng. Mater. 24, 2200259 (2022).

    Article  CAS  Google Scholar 

  • Rezapour, M. R. Structural, electronic, and magnetic characteristics of graphitic carbon nitride nanoribbons and their applications in spintronics. J. Phys. Chem. C 126(38), 16429–16436 (2022).

    Article  CAS  Google Scholar 

  • Ezawa, M. Quasi-ferromagnet spintronics in the graphene nanodisc–lead system. New J. Phys. 11(9), 095005 (2009).

    Article  ADS  Google Scholar 

  • Yan, X., Cui, X., Li, B. & Li, L. S. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10(5), 1869–1873 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kou, L., Li, F., Chen, W. & Guo, T. Synthesis of blue light-emitting graphene quantum dots and their application in flexible nonvolatile memory. Org. Electron. 14(6), 1447–1451 (2013).

    Article  CAS  Google Scholar 

  • Shen, J., Zhu, Y., Yang, X. & Li, C. Graphene quantum dots: Emergent nano lights for bioimaging, sensors, catalysis, and photovoltaic devices. Chem. Commun. 48(31), 3686–3699 (2012).

    Article  CAS  Google Scholar 

  • Geng, X. M. et al. Aqueous-processable noncovalent chemically converted graphene-quantum dot composites for flexible and transparent optoelectronic films. Adv. Mater. 22, 638–642 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, S. J. et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 47, 6858–6860 (2011).

    Article  CAS  Google Scholar 

  • Son, D. I. et al. Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465–471 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Konstantatos, G. et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Xu, H., Zhou, S., Fang, W. & Fan, Y. Synthesis of N-doped graphene quantum dots from bulk N-doped carbon nanofiber film for fluorescence detection of Fe3+ and ascorbic acid. Fuller. Nanotub. Carbon Nanostruct. 29, 218 (2020).

    Article  ADS  Google Scholar 

  • Cheng, S. H. et al. All carbon-based photodetectors: An eminent integration of graphite quantum dots and two-dimensional graphene. Sci. Rep. 3, 2694 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharathi, G. et al. Graphene quantum dot solid sheets: Strong blue-light-emitting & photocurrent-producing band-gap-opened nanostructures. Sci. Rep. 7, 10850 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Guo, Z. et al. Facile synthesis of amine-functionalized graphene quantum dots with highly pH-sensitive photoluminescence. Fuller. Nanotub. Carbon Nanostuct. 25, 704–709 (2017).

    Article  ADS  CAS  Google Scholar 

  • Liang, G. et al. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J. Nanobiotechnol. 18, 1–22 (2020).

    Article  CAS  Google Scholar 

  • Wen, G., Li, Z., Tong, C., Min, L. & Lu, Y. Extended near-infrared photoactivity of Bi6Fe1.9Co0.1Ti3O18 by upconversion nanoparticles. Nanomaterials 8, 534 (2018).

    Article  Google Scholar 

  • Chen, C. et al. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat. Commun. 9, 3290 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Dukhno, O. et al. Time-dependent luminescence loss of individual upconversion nanoparticles upon dilution in aqueous solutions. Nanoscale 10, 15904–15910 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Ai, X. et al. Remote regulation of membrane channel activity by site-specific localization of lanthanide-doped upconversion nanocrystals. Angew. Chem. Int. Ed. 129, 3077–3081 (2017).

    Article  ADS  Google Scholar 

  • Sun, M. et al. Phototherapy: Hierarchical plasmonic nanorods and upconversion core-satellite nano assemblies for multimodal imaging-guided combination phototherapy. Adv. Mater. 28, 898–904 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Liang, L. et al. Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 8, 11945–11953 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Rao, L. et al. Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl. Mater. Interfaces 9, 2159–2168 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal, A. et al. Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev. 118, 3121–3207 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–683 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Du, P., Luo, L., Huang, X. & Yu, J. S. Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater. J. Colloid Interface Sci. 514, 172–181 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Qiu, Z., Shu, J. & Tang, D. Near-infrared-to-ultraviolet light-mediated photoelectrochemical aptasensing platform for cancer biomarker based on core-shell NaYF4:Yb, Tm@TiO2 upconversion micro rods. Anal. Chem. 90, 1021–1028 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Wu, Z. et al. Highly efficient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near-infrared light towards chromium(VI) reduction and rhodamine B oxidative degradation. Appl. Catal. B Environ. 225, 8–21 (2018).

    Article  CAS  Google Scholar 

  • Gu, B. & Zhang, Q. Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Adv. Sci. 5, 1700609 (2018).

    Article  Google Scholar 

  • Kim, D.-H. et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nat. Photonics. 12, 98 (2018).

    Article  ADS  CAS  Google Scholar 

  • Wang, W.-N. et al. Controlled synthesis of upconverting nanoparticles/ZnxCd1-xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light. Appl. Catal. B Environ. 224, 854–862 (2018).

    Article  CAS  Google Scholar 

  • Wen, S. et al. Advances in highly doped upconversion nanoparticles. Nat. Commun. 9, 2415 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Zhao, J. et al. Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells. J. Am. Chem. Soc. 140, 578–581 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J. et al. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat. Photon. 12, 154 (2018).

    Article  ADS  CAS  Google Scholar 

  • Zhang, Y. et al. Near-infrared-triggered antibacterial and antifungal photodynamic therapy based on lanthanide-doped upconversion nanoparticles. Nanoscale 10, 15485–15495 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Boyer, J.-C., Vetrone, F., Cuccia, L. A. & Capobianco, J. A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 128, 7444–7445 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, K. K. et al. Nanodiamonds conjugated upconversion nanoparticles for bio-imaging and drug delivery. J. Colloid Interface Sci. 537, 316–324 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Li, X. M., Zhang, F. & Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 44, 1346–1378 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Xiang, J. et al. Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy. ACS Nano 9, 6401–6411 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Xu, J. et al. Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 11, 4463–4474 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. et al. Bioinspired drug delivery carrier for enhanced tumor-targeting in melanoma mice model. J. Biomed. Nanotechnol. 15, 1482–1491 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Chang, S. L. Microwave sol–gel derived NaCaGd(MoO4)3: Er3+/Yb3+ phosphors and their upconversion photoluminescence properties. Infrared Phys. Technol. 76, 353–359 (2016).

    Article  Google Scholar 

  • Peng, D., Huang, X. & Yu, J. S. Yb3+-concentration dependent upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted Sol-Gel method. Inorg. Chem. Front. 4, 1987–1995 (2017).

    Article  Google Scholar 

  • Guan, Y. et al. Near-infrared triggered upconversion polymeric nanoparticles based on aggregation-induced emission and mitochondria targeting for photodynamic cancer therapy. ACS Appl. Mater. Interfaces. 9, 26731–26739 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, N., Wu, B., Hu, X. & Xing, D. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials 141, 40–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Placha, D. & Jampilek, J. Graphenic materials for biomedical applications. Nanomaterials 9(1758), 73 (2019).

    Google Scholar 

  • Maiti, D., Tong, X. M., Mou, X. Z. & Yang, K. Carbon-based nanomaterials for biomedical applications: A recent study. Front. Pharmacol. 9, 1401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosal, K. & Sarkar, K. Biomedical applications of graphene nanomaterials and beyond. ACS Biomater. Sci. Eng. 4, 2653–2703 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Chen, Z. G., Cole, I. & Li, Q. Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon 82, 304–313 (2015).

    Article  CAS  Google Scholar 

  • Ashouri, S., Dolatyari, M., Zarghami, A., Farshbaf Pourabad, R. & Rostami, A. Effects of Ag/SiO2 nanoparticles on gene expression of digestive α-amylase in Colorado potato beetle. Austin J. Biotechnol. Bioeng. 9, 1116–1126 (2022).

    Google Scholar 

  • Biswal, B. P., Shinde, D. B., Pillai, V. K. & Banerjee, R. Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning. Nanoscale 5(21), 10556–10561 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Shen, J., Zhu, Y., Chen, C., Yang, X. & Li, C. Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun. 47, 2580–2582 (2011).

    Article  CAS  Google Scholar 

  • Mhlongo, M. R., Koao, L. F., Motaung, T. E., Kroon, R. E. & Motloung, S. V. analysis of Nd3+ concentration on the structure, morphology, and photoluminescence of sol–gel Sr3ZnAl2O7 nano phosphor. Results Phys. 12, 1786–1796 (2019).

    Article  ADS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img