Zephyrnet Logo

Genomic and transcriptomic analysis of camptothecin producing novel fungal endophyte: Alternaria burnsii NCIM 1409 – Scientific Reports

Date:

  • Atanasov, A. G. et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 33, 1582–1614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy, M. K. et al. Biotechnology of camptothecin production in Nothapodytes nimmoniana, Ophiorrhiza sp. and Camptotheca acuminata. Appl. Microbiol. Biotechnol. 105, 9089–9102 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Mohinudeen, I. A. H. K., Pandey, S., Kanniyappan, H., Muthuvijayan, V. & Srivastava, S. Screening and selection of camptothecin producing endophytes from Nothapodytes nimmoniana. Sci. Rep. 11, 11205 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida, A., Fernandes, E., Sarmento, B. & Lúcio, M. A biophysical insight of camptothecin biodistribution: Towards a molecular understanding of its pharmacokinetic issues. Pharmaceutics 13, 869 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, T.-A.M. et al. Discovering and harnessing oxidative enzymes for chemoenzymatic synthesis and diversification of anticancer camptothecin analogues. Commun. Chem. 4, 1–7 (2021).

    Article  Google Scholar 

  • Shrivastava, V., Sharma, N., Shrivastava, V. & Sharma, A. Review on camptothecin producing medicinal plant: Nothapodytes nimmoniana. Biomed. Pharmacol. J. 14, 1799–1813 (2021).

    Article  CAS  Google Scholar 

  • Venugopalan, A. & Srivastava, S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol. Adv. 33, 873–887 (2015).

    Article  PubMed  Google Scholar 

  • Narayani, M., Chadha, A. & Srivastava, S. Cyclotides from the Indian medicinal plant viola odorata (Banafsha): Identification and characterization. J. Nat. Prod. 80, 1972–1980 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Kharissova, O. V., Kharisov, B. I., Oliva González, C. M., Méndez, Y. P. & López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci. 6, 191378 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Li, Y. & Smolke, C. D. Strategies for microbial synthesis of high-value phytochemicals. Nat. Chem. 10, 395–404 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Mohinudeen, I. A. H. K. et al. Sustainable production of camptothecin from an Alternaria sp. isolated from Nothapodytes nimmoniana. Sci. Rep. 11, 1478 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig-Müller, J. Plants and endophytes: Equal partners in secondary metabolite production?. Biotechnol. Lett. 37, 1325–1334 (2015).

    Article  PubMed  Google Scholar 

  • Kusari, S., Košuth, J., Čellárová, E. & Spiteller, M. Survival-strategies of endophytic Fusarium solani against indigenous camptothecin biosynthesis. Fungal Ecol. 4, 219–223 (2011).

    Article  Google Scholar 

  • Bielecka, M., Pencakowski, B. & Nicoletti, R. Using next-generation sequencing technology to explore genetic pathways in endophytic fungi in the syntheses of plant bioactive metabolites. Agriculture 12, 187 (2022).

    Article  CAS  Google Scholar 

  • Kusari, S., Zühlke, S. & Spiteller, M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J. Nat. Prod. 72, 2–7 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Xiang, P. et al. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Appl. Microbiol. Biotechnol. 97, 9365–9375 (2013).

    Article  Google Scholar 

  • Degambada, K. D., Kumara, P. A. A. S. P., Salim, N., Abeysekera, A. M. & Chandrika, U. G. Diaporthe sp F18; a new source of camptothecin-producing endophytic fungus from Nothapodytes nimmoniana growing in Sri Lanka. Nat. Prod. Res. 0, 1–6 (2021).

    Google Scholar 

  • Feng, J. et al. An inexpensive method for extraction of genomic DNA from fungal mycelia. Can. J. Plant Pathol. 32, 396–401 (2010).

    Article  CAS  Google Scholar 

  • Babraham Bioinformatics: FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinforma. Oxf. Engl. 30, 2114–2120 (2014).

    Article  CAS  Google Scholar 

  • Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinforma. 70, e102 (2020).

    Article  CAS  Google Scholar 

  • Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinforma. Oxf. Engl. 29, 1072–1075 (2013).

    Article  CAS  Google Scholar 

  • Pucker, B. et al. A de novo genome sequence assembly of the arabidopsis thaliana accession niederzenz-1 displays presence/absence variation and strong synteny. PLoS ONE 11, e0164321 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dang, H., Pryor, B., Peever, T. & Lawrence, C. The alternaria genomes database: A comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species. BMC Genomics 16, 1–9 (2015).

    Article  CAS  Google Scholar 

  • Mesny, F. et al. Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nat. Commun. 12, 7227 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeiner, C. A. et al. Comparative analysis of secretome profiles of manganese(II)-oxidizing ascomycete fungi. PLoS ONE 11, e0157844 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genomics Bioinform. 3, lqaa108 (2021).

    Article  Google Scholar 

  • Gabriel, L., Hoff, K. J., Brůna, T., Borodovsky, M. & Stanke, M. TSEBRA: Transcript selector for BRAKER. BMC Bioinform. 22, 566 (2021).

    Article  CAS  Google Scholar 

  • Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinforma. Oxf. Engl. 30, 1236–1240 (2014).

    Article  CAS  Google Scholar 

  • Blin, K. et al. AntiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, D. et al. De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. GigaScience 6, gix065 (2017).

    Article  Google Scholar 

  • Rather, G. A. et al. De novo transcriptome analyses reveals putative pathway genes involved in biosynthesis and regulation of camptothecin in Nothapodytes nimmoniana (Graham) Mabb. Plant Mol. Biol. 96, 197–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Rai, A. et al. Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis. Nat. Commun. 12, 405 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellner, F. et al. Genome-guided investigation of plant natural product biosynthesis. Plant J. Cell Mol. Biol. 82, 680–692 (2015).

    Article  CAS  Google Scholar 

  • Emms, D. & Kelly, S. OrthoFinder2: Fast and Accurate Phylogenomic Orthology Analysis from Gene Sequences. (2018). https://doi.org/10.1101/466201

  • Lallemand, T., Leduc, M., Landès, C., Rizzon, C. & Lerat, E. An overview of duplicated gene detection methods: Why the duplication mechanism has to be accounted for in their choice. Genes 11, 1046 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, H. et al. tanghaibao/jcvi: JCVI v0.7.5. (2017) https://doi.org/10.5281/zenodo.846919

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadre, R. et al. Metabolite diversity in alkaloid biosynthesis: A multilane (Diastereomer) highway for camptothecin synthesis in Camptotheca acuminata. Plant Cell 28, 1926–1944 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusari, S., Hertweck, C. & Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol. 19, 792–798 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Pu, X. et al. Possible clues for camptothecin biosynthesis from the metabolites in camptothecin-producing plants. Fitoterapia 134, 113–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Yang, M. et al. Divergent camptothecin biosynthetic pathway in Ophiorrhiza pumila. BMC Biol. 19, 1–16 (2021).

    Article  CAS  Google Scholar 

  • Ding, X., Liu, K., Zhang, Y. & Liu, F. D. novo transcriptome assembly and characterization of the 10-hydroxycamptothecin-producing Xylaria sp. M71 following salicylic acid treatment. J. Microbiol. 55, 871–876 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Sirikantaramas, S., Yamazaki, M. & Saito, K. Mutations in topoisomerase I as a self-resistance mechanism coevolved with the production of the anticancer alkaloid camptothecin in plants. Proc. Natl. Acad. Sci. 105, 6782–6786 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Staker, B. L. et al. Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J. Med. Chem. 48, 2336–2345 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Fujimori, A., Harker, W. G., Kohlhagen, G., Hoki, Y. & Pommier, Y. Mutation at the catalytic site of topoisomerase I in CEM/C2, a human leukemia cell line resistant to camptothecin. Cancer Res. 55, 1339–1346 (1995).

    CAS  PubMed  Google Scholar 

  • Collemare, J. & Lebrun, M.-H. Fungal secondary metabolites: Ancient toxins and novel effectors in plant–microbe interactions. in Effectors in Plant–Microbe Interactions 377–400 (John Wiley & Sons, Ltd, 2011). https://doi.org/10.1002/9781119949138.ch15.

  • Manjunatha, B. L. et al. Transcriptome analysis of stem wood of Nothapodytes nimmoniana (Graham) Mabb. identifies genes associated with biosynthesis of camptothecin, an anti-carcinogenic molecule. J. Biosci. 41, 119–131 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Heinig, U., Scholz, S. & Jennewein, S. Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers. 60, 161–170 (2013).

    Article  Google Scholar 

  • Yang, Y. et al. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics 15, 69 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Z. et al. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biol. 18, 63 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shweta, S. et al. Inhibition of fungal endophytes by camptothecine produced by their host plant, Nothapodytes nimmoniana (Grahm) Mabb. (Icacinaceae). Curr. Sci. 107, 994–1000 (2014).

    CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img