Zephyrnet Logo

From observational to actionable: rethinking omics in biologics production

Date:

    • Zhang Y.-H.P.
    • et al.

    Biomanufacturing: history and perspective.

    J. Ind. Microbiol. Biotechnol. 2017; 44: 773-784

    • Amer B.
    • Baidoo E.E.K.

    Omics-driven biotechnology for industrial applications.

    Front. Bioeng. Biotechnol. 2021; 9613307

    • Samoudi M.
    • et al.

    From omics to cellular mechanisms in mammalian cell factory development.

    Curr. Opin. Chem. Eng. 2021; 32100688

    • Stolfa G.
    • et al.

    CHO-omics review: the impact of current and emerging technologies on Chinese hamster ovary based bioproduction.

    Biotechnol. J. 2018; 13e1700227

    • Hefzi H.
    • Lewis N.E.

    From random mutagenesis to systems biology in metabolic engineering of mammalian cells.

    Pharmaceut. Bioprocess. 2014; 2: 355-358

    • Xiong K.
    • et al.

    An optimized genome-wide, virus-free CRISPR screen for mammalian cells.

    Cell Rep. Methods. 2021; 1100062

    • Karottki K.J. la C.
    • et al.

    A metabolic CRISPR-Cas9 screen in Chinese hamster ovary cells identifies glutamine-sensitive genes.

    Metab. Eng. 2021; 66: 114-122

    • Schmieder V.
    • et al.

    A pooled CRISPR/AsCpf1 screen using paired gRNAs to induce genomic deletions in Chinese hamster ovary cells.

    Biotechnol. Rep. (Amst). 2021; 31e00649

    • Bauer N.
    • et al.

    An arrayed CRISPR screen reveals Myc depletion to increase productivity of difficult-to-express complex antibodies in CHO cells.

    Synth. Biol. 2022; 7: ysac026

    • Kretzmer C.
    • et al.

    De novo assembly and annotation of the CHOZN® GS genome supports high-throughput genome-scale screening.

    Biotechnol. Bioeng. 2022; 119: 3632-3646

    • Athieniti E.
    • Spyrou G.M.

    A guide to multi-omics data collection and integration for translational medicine.

    Comput. Struct. Biotechnol. J. 2023; 21: 134-149

    • Klingler F.
    • et al.

    Unveiling the CHO surfaceome: identification of cell surface proteins reveals cell aggregation-relevant mechanisms.

    Biotechnol. Bioeng. 2021; 118: 3015-3028

    • Jerabek T.
    • et al.

    The potential of emerging sub-omics technologies for CHO cell engineering.

    Biotechnol. Adv. 2022; 59107978

    • Kol S.
    • et al.

    Multiplex secretome engineering enhances recombinant protein production and purity.

    Nat. Commun. 2020; 11: 1908

    • Valente K.N.
    • et al.

    Applications of proteomic methods for CHO host cell protein characterization in biopharmaceutical manufacturing.

    Curr. Opin. Biotechnol. 2018; 53: 144-150

    • Lewis N.E.
    • et al.

    Gene expression profiling and the use of genome-scale in silico models of Escherichia coli for analysis: providing context for content.

    J. Bacteriol. 2009; 191: 3437-3444

    • Gutierrez J.M.
    • Lewis N.E.

    Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.

    Biotechnol. J. 2015; 10: 939-949

    • Lu J.
    • et al.

    In silico cell factory design driven by comprehensive genome-scale metabolic models: development and challenges.

    Syst. Microbiol. Biomanufact. 2022; (Published online July 22, 2022)

    • Lewis N.E.
    • et al.

    Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods.

    Nat. Rev. Microbiol. 2012; 10: 291-305

    • Hyduke D.R.
    • et al.

    Analysis of omics data with genome-scale models of metabolism.

    Mol. BioSyst. 2013; 9: 167-174

    • Huang Z.
    • Yoon S.

    Identifying metabolic features and engineering targets for productivity improvement in CHO cells by integrated transcriptomics and genome-scale metabolic model.

    Biochem. Eng. J. 2020; 159107624

    • Lakshmanan M.
    • et al.

    Multi-omics profiling of CHO parental hosts reveals cell line-specific variations in bioprocessing traits.

    Biotechnol. Bioeng. 2019; 116: 2117-2129

    • Huang Z.
    • et al.

    CHO cell productivity improvement by genome-scale modeling and pathway analysis: application to feed supplements.

    Biochem. Eng. J. 2020; 160107638

    • Fouladiha H.
    • et al.

    A metabolic network-based approach for developing feeding strategies for CHO cells to increase monoclonal antibody production.

    Bioprocess Biosyst. Eng. 2020; 43: 1381-1389

    • Hoang D.
    • et al.

    Modulation of nutrient precursors for controlling metabolic inhibitors by genome-scale flux balance analysis.

    Biotechnol. Prog. 2022; (Published online November 11, 2022)

    • Opdam S.
    • et al.

    A systematic evaluation of methods for tailoring genome-scale metabolic models.

    Cell Syst. 2017; 4: 318-329.e6

    • Gopalakrishnan S.
    • et al.

    Guidelines for extracting biologically relevant context-specific metabolic models using gene expression data.

    Metab. Eng. 2023; 75: 181-191

    • Zhang C.
    • Hua Q.

    Applications of genome-scale metabolic models in biotechnology and systems medicine.

    Front. Physiol. 2015; 6: 413

    • Lerman J.A.
    • et al.

    In silico method for modelling metabolism and gene product expression at genome scale.

    Nat. Commun. 2012; 3: 929

    • Dahal S.
    • et al.

    Recent advances in genome-scale modeling of proteome allocation.

    Curr. Opin. Syst. Biol. 2021; 26: 39-45

    • Gutierrez J.M.
    • et al.

    Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion.

    Nat. Commun. 2020; 11: 68

    • Feizi A.
    • et al.

    Genome-scale modeling of the protein secretory machinery in yeast.

    PLoS One. 2013; 8e63284

    • Schinn S.-M.
    • et al.

    A genome-scale metabolic network model and machine learning predict amino acid concentrations in Chinese hamster ovary cell cultures.

    Biotechnol. Bioeng. 2021; 118: 2118-2123

    • Kyriakopoulos S.
    • et al.

    Kinetic modeling of mammalian cell culture bioprocessing: the quest to advance biomanufacturing.

    Biotechnol. J. 2018; 13e1700229

    • Park S.-Y.
    • et al.

    Bioprocess digital twins of mammalian cell culture for advanced biomanufacturing.

    Curr. Opin. Chem. Eng. 2021; 33100702

    • Almquist J.
    • et al.

    Kinetic models in industrial biotechnology – Improving cell factory performance.

    Metab. Eng. 2014; 24: 38-60

    • Hossler P.
    • et al.

    Systems analysis of N-glycan processing in mammalian cells.

    PLoS One. 2007; 2e713

    • Stach C.S.
    • et al.

    Model-driven engineering of N-linked glycosylation in Chinese hamster ovary cells.

    ACS Synth. Biol. 2019; 8: 2524-2535

    • Xu J.
    • et al.

    Systematic development of temperature shift strategies for Chinese hamster ovary cells based on short duration cultures and kinetic modeling.

    MAbs. 2019; 11: 191-204

    • Ben Yahia B.
    • et al.

    Predictive macroscopic modeling of cell growth, metabolism and monoclonal antibody production: case study of a CHO fed-batch production.

    Metab. Eng. 2021; 66: 204-216

    • Clarke C.
    • et al.

    Statistical methods for mining Chinese hamster ovary cell ‘omics data: from differential expression to integrated multilevel analysis of the biological system.

    Pharmaceut. Bioprocess. 2014; 2: 469-481

    • Mowbray M.
    • et al.

    Machine learning for biochemical engineering: a review.

    Biochem. Eng. J. 2021; 172108054

    • Antonakoudis A.
    • et al.

    The era of big data: genome-scale modelling meets machine learning.

    Comput. Struct. Biotechnol. J. 2020; 18: 3287-3300

    • Alden N.
    • et al.

    Using metabolomics to identify cell line-independent indicators of growth inhibition for Chinese hamster ovary cell-based bioprocesses.

    Metabolites. 2020; 10: 199

    • Barberi G.
    • et al.

    Anticipated cell lines selection in bioprocess scale-up through machine learning on metabolomics dynamics.

    IFAC-PapersOnLine. 2021; 54: 85-90

    • Barberi G.
    • et al.

    Integrating metabolome dynamics and process data to guide cell line selection in biopharmaceutical process development.

    Metab. Eng. 2022; 72: 353-364

    • Heffner K.
    • et al.

    Expanded Chinese hamster organ and cell line proteomics profiling reveals tissue-specific functionalities.

    Sci. Rep. 2020; 10: 15841

    • Budge J.D.
    • et al.

    Engineering of Chinese hamster ovary cell lipid metabolism results in an expanded ER and enhanced recombinant biotherapeutic protein production.

    Metab. Eng. 2020; 57: 203-216

    • Torres M.
    • et al.

    Metabolic profiling of Chinese hamster ovary cell cultures at different working volumes and agitation speeds using spin tube reactors.

    Biotechnol. Prog. 2021; 37e3099

    • Lin D.
    • et al.

    CHOmics: a web-based tool for multi-omics data analysis and interactive visualization in CHO cell lines.

    PLoS Comput. Biol. 2020; 16e1008498

    • Dhiman H.
    • et al.

    Genetic and epigenetic variation across genes involved in energy metabolism and mitochondria of Chinese hamster ovary cell lines.

    Biotechnol. J. 2019; 14e1800681

    • Choudhary K.S.
    • et al.

    Elucidation of regulatory modes for five two-component systems in Escherichia coli reveals novel relationships.

    mSystems. 2020; 5e00980-20

    • Huttlin E.L.
    • et al.

    Architecture of the human interactome defines protein communities and disease networks.

    Nature. 2017; 545: 505-509

    • Yeo H.C.
    • et al.

    Combined multivariate statistical and flux balance analyses uncover media bottlenecks to the growth and productivity of Chinese hamster ovary cell cultures.

    Biotechnol. Bioeng. 2022; 119: 1740-1754

    • Yao G.
    • et al.

    A metabolomics approach to increasing Chinese hamster ovary (CHO) cell productivity.

    Metabolites. 2021; 11: 823

    • Ding M.Q.
    • et al.

    Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics.

    Mol. Cancer Res. 2018; 16: 269-278

    • Tan K.
    • et al.

    A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction.

    BMC Med. Inform. Decis. Mak. 2020; 20: 129

    • Lee A.P.
    • et al.

    Multi-omics profiling of a CHO cell culture system unravels the effect of culture pH on cell growth, antibody titer, and product quality.

    Biotechnol. Bioeng. 2021; 118: 4305-4316

    • Tzani I.
    • et al.

    Understanding the transcriptional response to ER stress in Chinese hamster ovary cells using multiplexed single cell RNA-seq.

    bioRxiv. 2022; (Published online March 31, 2022)

    • Aibar S.
    • et al.

    SCENIC: single-cell regulatory network inference and clustering.

    Nat. Methods. 2017; 14: 1083-1086

    • Jin T.
    • et al.

    scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks.

    Genome Med. 2021; 13: 95

    • Keenan A.B.
    • et al.

    ChEA3: transcription factor enrichment analysis by orthogonal omics integration.

    Nucleic Acids Res. 2019; 47: W212-W224

    • Krämer A.
    • et al.

    Causal analysis approaches in Ingenuity Pathway Analysis.

    Bioinformatics. 2014; 30: 523-530

    • Szklarczyk D.
    • et al.

    The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets.

    Nucleic Acids Res. 2021; 49: D605-D612

    • Huang J.K.
    • et al.

    Systematic evaluation of molecular networks for discovery of disease genes.

    Cell Syst. 2018; 6: 484-495.e5

    • Zhang Q.C.
    • et al.

    PrePPI: a structure-informed database of protein-protein interactions.

    Nucleic Acids Res. 2013; 41: D828-D833

    • Chiang A.W.T.
    • et al.

    Combating viral contaminants in CHO cells by engineering innate immunity.

    Sci. Rep. 2019; 9: 8827

    • Kuo C.-C.
    • et al.

    Dysregulation of the secretory pathway connects Alzheimer’s disease genetics to aggregate formation.

    Cell Syst. 2021; 12: 873-884.e4

    • Sriyudthsak K.
    • et al.

    Mathematical modeling and dynamic simulation of metabolic reaction systems using metabolome time series data.

    Front. Mol. Biosci. 2016; 3: 15

    • Saa P.A.
    • Nielsen L.K.

    Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach.

    Sci. Rep. 2016; 6: 29635

    • Girbig D.
    • et al.

    Systematic analysis of stability patterns in plant primary metabolism.

    PLoS One. 2012; 7e34686

    • Andreozzi S.
    • et al.

    iSCHRUNK–In silico approach to characterization and reduction of uncertainty in the kinetic models of genome-scale metabolic networks.

    Metab. Eng. 2016; 33: 158-168

    • Sridhara V.
    • et al.

    Predicting growth conditions from internal metabolic fluxes in an in-silico model of E. coli.

    PLoS One. 2014; 9e114608

    • Zhang J.
    • et al.

    Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism.

    Nat. Commun. 2020; 11: 4880

    • Shaked I.
    • et al.

    Metabolic network prediction of drug side effects.

    Cell Syst. 2016; 2: 209-213

    • Narayanan H.
    • et al.

    Hybrid models based on machine learning and an increasing degree of process knowledge: application to cell culture processes.

    Ind. Eng. Chem. Res. 2022; 61: 8658-8672

    • Tsopanoglou A.
    • del Val I.J.

    Moving towards an era of hybrid modelling: advantages and challenges of coupling mechanistic and data-driven models for upstream pharmaceutical bioprocesses.

    Curr. Opin. Chem. Eng. 2021; 32100691

    • Kotidis P.
    • Kontoravdi C.

    Harnessing the potential of artificial neural networks for predicting protein glycosylation.

    Metab. Eng. Commun. 2020; 10e00131

    • Kotidis P.
    • et al.

    Model-based optimization of antibody galactosylation in CHO cell culture.

    Biotechnol. Bioeng. 2019; 116: 1612-1626

    • Zampieri G.
    • et al.

    Machine and deep learning meet genome-scale metabolic modeling.

    PLoS Comput. Biol. 2019; 15e1007084

    • Richelle A.
    • et al.

    Model-based assessment of mammalian cell metabolic functionalities using omics data.

    Cell Rep. Methods. 2021; 1100040

    • Richelle A.
    • et al.

    Assessing key decisions for transcriptomic data integration in biochemical networks.

    PLoS Comput. Biol. 2019; 15e1007185

    • Marx N.
    • et al.

    How to train your cell – Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines.

    Biotechnol. Adv. 2022; 56107924

    • Tomczak K.
    • et al.

    The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge.

    Contemp. Oncol. 2015; 19: A68-A77

    • International Cancer Genome Consortium
    • et al.

    International network of cancer genome projects.

    Nature. 2010; 464: 993-998

    • ENCODE Project Consortium

    An integrated encyclopedia of DNA elements in the human genome.

    Nature. 2012; 489: 57-74

    • Luo Y.
    • et al.

    New developments on the Encyclopedia of DNA Elements (ENCODE) data portal.

    Nucleic Acids Res. 2020; 48: D882-D889

    • Golabgir A.
    • et al.

    Quantitative feature extraction from the Chinese hamster ovary bioprocess bibliome using a novel meta-analysis workflow.

    Biotechnol. Adv. 2016; 34: 621-633

    • Kim H.U.
    • et al.

    Metabolic flux analysis and metabolic engineering of microorganisms.

    Mol. BioSyst. 2008; 4: 113-120

    • Thiele I.
    • Palsson B.Ø.

    A protocol for generating a high-quality genome-scale metabolic reconstruction.

    Nat. Protoc. 2010; 5: 93-121

    • Gu C.
    • et al.

    Current status and applications of genome-scale metabolic models.

    Genome Biol. 2019; 20: 121

    • Edwards J.S.
    • Palsson B.O.

    Systems properties of the Haemophilus influenzae Rd metabolic genotype.

    J. Biol. Chem. 1999; 274: 17410-17416

    • Edwards J.S.
    • Palsson B.O.

    The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities.

    Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 5528-5533

    • Förster J.
    • et al.

    Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network.

    Genome Res. 2003; 13: 244-253

    • Henry C.S.
    • et al.

    iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations.

    Genome Biol. 2009; 10: R69

    • He M.
    • et al.

    Metabolic engineering of based on genome-scale metabolic model to promote fengycin production.

    3 Biotech. 2021; 11: 448

    • Theron C.W.
    • et al.

    Integrating metabolic modeling and population heterogeneity analysis into optimizing recombinant protein production by Komagataella (Pichia) pastoris.

    Appl. Microbiol. Biotechnol. 2018; 102: 63-80

    • Duarte N.C.
    • et al.

    Global reconstruction of the human metabolic network based on genomic and bibliomic data.

    Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 1777-1782

    • Hefzi H.
    • et al.

    A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism.

    Cell Syst. 2016; 3: 434-443.e8

    • Norsigian C.J.
    • et al.

    BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree.

    Nucleic Acids Res. 2020; 48: D402-D406

    • Fang X.
    • et al.

    Reconstructing organisms in silico: genome-scale models and their emerging applications.

    Nat. Rev. Microbiol. 2020; 18: 731-743

    • Islam M.M.
    • et al.

    Kinetic modeling of metabolism: Present and future.

    Curr. Opin. Syst. Biol. 2021; 26: 72-78

    • Shannon P.
    • et al.

    Cytoscape: a software environment for integrated models of biomolecular interaction networks.

    Genome Res. 2003; 13: 2498-2504

  • spot_img

    Latest Intelligence

    spot_img