Zephyrnet Logo

Factors affecting the competitiveness of bacterial fermentation

Date:

    • Ko Y.-S.
    • et al.

    Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production.

    Chem. Soc. Rev. 2020; 49: 4615-4636

  • Is net zero carbon 2050 possible?.

    Joule. 2020; 4: 2237-2240

    • Spekreijse J.
    • et al.

    Insights into the European Market of Bio-based Chemicals.

    Publications Office of the European Union, 2019

    • Williamson M.A.

    US Biobased Products Market Potential and Projections through 2025.

    Nova Science Publishers, 2010

    • Yang D.
    • et al.

    Metabolic engineering of Escherichia coli for natural product biosynthesis.

    Trends Biotechnol. 2020; 38: 745-765

    • Choi K.R.
    • et al.

    Metabolic engineering strategies toward production of biofuels.

    Curr. Opin. Chem. Biol. 2020; 59: 1-14

    • Choi K.R.
    • et al.

    Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering.

    Trends Biotechnol. 2019; 37: 817-837

    • Chen G.-Q.
    • Liu X.

    On the future fermentation.

    Microb. Biotechnol. 2021; 14: 18-21

  • High cell-density culture of Escherichia coli.

    Trends Biotechnol. 1996; 14: 98-105

    • Ahn J.H.
    • et al.

    Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase.

    Nat. Commun. 2020; 11: 1970

    • Han T.
    • et al.

    Glutaric acid production by systems metabolic engineering of an l-lysine–overproducing Corynebacterium glutamicum.

    Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 30328-30334

    • Sun Y.-Q.
    • et al.

    Advances in bioconversion of glycerol to 1, 3-propanediol: prospects and challenges.

    Process Biochem. 2018; 71: 134-146

    • Burgard A.
    • et al.

    Development of a commercial scale process for production of 1, 4-butanediol from sugar.

    Curr. Opin. Biotechnol. 2016; 42: 118-125

    • Jullesson D.
    • et al.

    Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Biotechnol. Adv. 2015; 33: 1395-1402

  • Synthetic biology’s first malaria drug meets market resistance.

    Nature. 2016; 530: 389

    • Martău G.A.
    • et al.

    Bio-vanillin: towards a sustainable industrial production.

    Trends Food Sci. Technol. 2021; 109: 579-592

    • Choi S.Y.
    • et al.

    Microbial polyhydroxyalkanoates and nonnatural polyesters.

    Adv. Mater. 2020; 32: 1907138

    • Lee Y.
    • et al.

    Systems metabolic engineering strategies for non-natural microbial polyester production.

    Biotechnol. J. 2019; 14: 1800426

    • Choi S.Y.
    • et al.

    One-step fermentative production of poly (lactate-co-glycolate) from carbohydrates in Escherichia coli.

    Nat. Biotechnol. 2016; 34: 435-440

    • Laser M.
    • Lynd L.R.

    Comparative efficiency and driving range of light-and heavy-duty vehicles powered with biomass energy stored in liquid fuels or batteries.

    Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 3360-3364

    • Van Dien S.

    From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals.

    Curr. Opin. Biotechnol. 2013; 24: 1061-1068

    • Feist A.M.
    • et al.

    Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli.

    Metab. Eng. 2010; 12: 173-186

    • Korvin D.
    • Yadav V.G.

    A molecular switch that enhances productivity of bioprocesses for heterologous metabolite production.

    Mol. Syst. Des. Eng. 2018; 3: 550-559

    • Zhuang K.
    • et al.

    Dynamic strain scanning optimization: an efficient strain design strategy for balanced yield, titer, and productivity. DySScO strategy for strain design.

    BMC Biotechnol. 2013; 13: 8

    • Raj K.
    • et al.

    Novel two-stage processes for optimal chemical production in microbes.

    Metab. Eng. 2020; 62: 186-197

    • Lynch M.D.

    The bioprocess TEA calculator: an online technoeconomic analysis tool to evaluate the commercial competitiveness of potential bioprocesses.

    Metab. Eng. 2021; 65: 42-51

    • Sandberg T.E.
    • et al.

    The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology.

    Metab. Eng. 2019; 56: 1-16

    • Roffler S.
    • et al.

    In situ recovery of fermentation products.

    Trends Biotechnol. 1984; 2: 129-136

    • Saboe P.O.
    • et al.

    In situ recovery of bio-based carboxylic acids.

    Green Chem. 2018; 20: 1791-1804

    • Lee S.Y.
    • Kim H.U.

    Systems strategies for developing industrial microbial strains.

    Nat. Biotechnol. 2015; 33: 1061-1072

    • Zheng Y.
    • et al.

    Evaluation of different biomass materials as feedstock for fermentable sugar production.

    Appl. Biochem. Biotechnol. 2007; 137: 423-435

    • Kohlstedt M.
    • et al.

    From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida.

    Metab. Eng. 2018; 47: 279-293

    • Maleki F.
    • et al.

    Consolidated bioprocessing for bioethanol production by metabolically engineered Bacillus subtilis strains.

    Sci. Rep. 2021; 11: 13731

    • Nagarajan D.
    • et al.

    Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production.

    Int. J. Hydrog. Energy. 2019; 44: 14362-14379

    • Jiang Y.
    • et al.

    Consolidated bioprocessing performance of a two-species microbial consortium for butanol production from lignocellulosic biomass.

    Biotechnol. Bioeng. 2020; 117: 2985-2995

    • Liu L.
    • et al.

    Consolidated bioprocessing performance of bacterial consortium EMSD5 on hemicellulose for isopropanol production.

    Bioresour. Technol. 2019; 292121965

    • Li C.
    • et al.

    Consolidated bioprocessing of lignocellulose for production of glucaric acid by an artificial microbial consortium.

    Biotechnol. Biofuels. 2021; 14: 110

    • Mattam A.J.
    • et al.

    Fermentation of glycerol and production of valuable chemical and biofuel molecules.

    Biotechnol. Lett. 2013; 35: 831-842

    • Garlapati V.K.
    • et al.

    Bioconversion technologies of crude glycerol to value added industrial products.

    Biotechnol. Rep. 2016; 9: 9-14

    • Wainaina S.
    • et al.

    Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies.

    Bioresour. Technol. 2020; 301122778

    • Lim C.K.
    • et al.

    Designing and engineering Methylorubrum extorquens AM1 for itaconic acid production.

    Front. Microbiol. 2019; 10: 1027

    • Yang J.
    • et al.

    Metabolic engineering of Methylobacterium extorquens AM1 for the production of butadiene precursor.

    Microb. Cell Factories. 2018; 17: 194

    • Sonntag F.
    • et al.

    Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol.

    Metab. Eng. 2015; 32: 82-94

    • Khosravi-Darani K.
    • et al.

    Microbial production of poly (hydroxybutyrate) from C 1 carbon sources.

    Appl. Microbiol. Biotechnol. 2013; 97: 1407-1424

    • Bang J.
    • et al.

    Synthetic formatotrophs for one-carbon biorefinery.

    Adv. Sci. 2021; 8: 2100199

    • Bang J.
    • et al.

    Escherichia coli is engineered to grow on CO2 and formic acid.

    Nat. Microbiol. 2020; 5: 1459-1463

    • Cotton C.A.
    • et al.

    Renewable methanol and formate as microbial feedstocks.

    Curr. Opin. Biotechnol. 2020; 62: 168-180

    • Park S.H.
    • et al.

    Metabolic engineering of Corynebacterium glutamicum for L-arginine production.

    Nat. Commun. 2014; 5: 4618

    • Ahn J.H.
    • et al.

    Formic acid as a secondary substrate for succinic acid production by metabolically engineered Mannheimia succiniciproducens.

    Biotechnol. Bioeng. 2017; 114: 2837-2847

    • Park J.H.
    • et al.

    Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering.

    Biotechnol. Bioeng. 2011; 108: 1140-1147

    • Hao Y.
    • et al.

    High-yield production of L-valine in engineered Escherichia coli by a novel two-stage fermentation.

    Metab. Eng. 2020; 62: 198-206

    • Kim Y.-S.
    • et al.

    Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli.

    Appl. Microbiol. Biotechnol. 2011; 90: 489-497

    • Xue X.
    • et al.

    Enhanced 1, 3-propanediol production by supply of organic acids and repeated fed-batch culture.

    J. Ind. Microbiol. Biotechnol. 2010; 37: 681-687

    • Oh B.R.
    • et al.

    Efficient production of 1, 3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2, 3-butanediol deficient mutant of Klebsiella pneumoniae.

    Microb. Cell Factories. 2018; 17: 92

    • Singh V.
    • et al.

    Strategies for fermentation medium optimization: an in-depth review.

    Front. Microbiol. 2017; 7: 2087

    • Fasim A.
    • et al.

    Large-scale production of enzymes for biotechnology uses.

    Curr. Opin. Biotechnol. 2021; 69: 68-76

    • Kroll J.
    • et al.

    Plasmid addiction systems: perspectives and applications in biotechnology.

    Microb. Biotechnol. 2010; 3: 634-657

    • Ou B.
    • et al.

    Techniques for chromosomal integration and expression optimization in Escherichia coli.

    Biotechnol. Bioeng. 2018; 115: 2467-2478

    • Englaender J.A.
    • et al.

    Effect of genomic integration location on heterologous protein expression and metabolic engineering in E. coli.

    ACS Synth. Biol. 2017; 6: 710-720

    • Park S.Y.
    • et al.

    Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity.

    Metab. Eng. 2018; 49: 105-115

    • Lee S.
    • Kim P.

    Current status and applications of adaptive laboratory evolution in industrial microorganisms.

    J. Microbiol. Biotechnol. 2020; 30: 793-803

    • Wang X.
    • et al.

    Tolerance improvement of Corynebacterium glutamicum on lignocellulose derived inhibitors by adaptive evolution.

    Appl. Microbiol. Biotechnol. 2018; 102: 377-388

    • Thorwall S.
    • et al.

    Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis.

    Nat. Chem. Biol. 2020; 16: 113-121

    • Ling C.
    • et al.

    Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering.

    Nat. Commun. 2022; 13: 4925

    • Indira D.
    • et al.

    Sea water as a reaction medium for bioethanol production.

    in: Patra J. Microbial Biotechnology. Springer, 2018: 171-192

    • Amoozegar M.A.
    • et al.

    Halophiles and their vast potential in biofuel production.

    Front. Microbiol. 2019; 10: 1895

    • Yin J.
    • et al.

    Halophiles, coming stars for industrial biotechnology.

    Biotechnol. Adv. 2015; 33: 1433-1442

    • Zaky A.S.
    • et al.

    The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain.

    Sci. Rep. 2018; 8: 12127

    • Meng W.
    • et al.

    Non-sterilized fermentation of 2,3-butanediol with seawater by metabolic engineered fast-growing Vibrio natriegens.

    Front. Bioeng. Biotechnol. 2022; 10955097

    • Ma H.
    • et al.

    Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine.

    Nat. Commun. 2020; 11: 3313

    • Lorantfy B.
    • et al.

    Stoichiometric and kinetic analysis of extreme halophilic Archaea on various substrates in a corrosion resistant bioreactor.

    New Biotechnol. 2014; 31: 80-89

    • Yang Y.
    • Sha M.

    A beginner’s guide to bioprocess modes-batch, fed-batch, and continuous fermentation.

    Application Notes-Eppendorf. 2019; 408: 1-16

    • Mears L.
    • et al.

    A review of control strategies for manipulating the feed rate in fed-batch fermentation processes.

    J. Biotechnol. 2017; 245: 34-46

    • Li T.
    • et al.

    Open and continuous fermentation: products, conditions and bioprocess economy.

    Biotechnol. J. 2014; 9: 1503-1511

    • Kim S.Y.
    • et al.

    Development of a cell-recycled continuous fermentation process for enhanced production of succinic acid by high-yielding mutants of Actinobacillus succinogenes.

    Biotechnol. Bioprocess Eng. 2021; 26: 125-136

    • Lee J.W.
    • et al.

    Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens.

    Metab. Eng. 2016; 38: 409-417

    • Yao C.
    • et al.

    Improve gamma-aminobutyric acid production in Corynebacterium glutamicum by optimizing the metabolic flux.

    Syst. Microbiol. Biomanuf. 2022; 2: 305-316

    • Mannan A.A.
    • Bates D.G.

    Designing an irreversible metabolic switch for scalable induction of microbial chemical production.

    Nat. Commun. 2021; 12: 3419

    • Choi S.
    • et al.

    Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli.

    Metab. Eng. 2016; 38: 264-273

    • Ahn J.H.
    • et al.

    Production of succinic acid by metabolically engineered microorganisms.

    Curr. Opin. Biotechnol. 2016; 42: 54-66

    • Thakker C.
    • et al.

    Production of succinic acid by engineered E. coli strains using soybean carbohydrates as feedstock under aerobic fermentation conditions.

    Bioresour. Technol. 2013; 130: 398-405

    • Blankschien M.D.
    • et al.

    Metabolic engineering of Escherichia coli for the production of succinate from glycerol.

    Metab. Eng. 2010; 12: 409-419

    • Martínez I.
    • et al.

    Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain.

    Metab. Eng. 2010; 12: 499-509

    • Dai Z.
    • et al.

    Current advance in biological production of malic acid using wild type and metabolic engineered strains.

    Bioresour. Technol. 2018; 258: 345-353

    • Song C.W.
    • Lee S.Y.

    Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid.

    Appl. Microbiol. Biotechnol. 2015; 99: 8455-8464

    • Xiao M.
    • et al.

    Oxidative stress-related responses of Bifidobacterium longum subsp. longum BBMN68 at the proteomic level after exposure to oxygen.

    Microbiology. 2011; 157: 1573-1588

    • Yang Y.
    • et al.

    Microaerobic fermentation of Lactobacillus acidophilus within gut microbiome physiological conditions by BioFlo® bioprocess control stations.

    Application Notes-Eppendorf. 2019; 412: 1-8

    • Sonnleitner B.

    Automated measurement and monitoring of bioprocesses: key elements of the M3C strategy.

    in: Mandenius C.F. Titchener-Hooker N. Measurement, Monitoring, Modelling and Control of Bioprocesses. Springer, 2012: 1-33

    • Carvalho M.
    • et al.

    Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor.

    New Biotechnol. 2014; 31: 133-139

    • Kim B.
    • et al.

    Metabolic engineering of Escherichia coli for the enhanced production of l-tyrosine.

    Biotechnol. Bioeng. 2018; 115: 2554-2564

    • Narayanan H.
    • et al.

    Bioprocessing in the digital age: the role of process models.

    Biotechnol. J. 2020; 15: 1900172

    • Chang L.
    • et al.

    Nonlinear model predictive control of fed-batch fermentations using dynamic flux balance models.

    J. Process Control. 2016; 42: 137-149

    • Loutfi H.
    • et al.

    Real-time monitoring of bacterial growth kinetics in suspensions using laser speckle imaging.

    Sci. Rep. 2020; 10: 408

    • Metcalfe G.D.
    • et al.

    On-line analysis and in situ pH monitoring of mixed acid fermentation by Escherichia coli using combined FTIR and Raman techniques.

    Anal. Bioanal. Chem. 2020; 412: 7307-7319

    • Crater J.S.
    • Lievense J.C.

    Scale-up of industrial microbial processes.

    FEMS Microbiol. Lett. 2018; 365: fny138

    • Anane E.
    • et al.

    A model-based framework for parallel scale-down fed-batch cultivations in mini-bioreactors for accelerated phenotyping.

    Biotechnol. Bioeng. 2019; 116: 2906-2918

    • Wang G.
    • et al.

    Developing a computational framework to advance bioprocess scale-up.

    Trends Biotechnol. 2020; 38: 846-856

    • Ho P.
    • et al.

    Reproduction of large-scale bioreactor conditions on microfluidic chips.

    Microorganisms. 2019; 7: 105

    • Nadal-Rey G.
    • et al.

    Development of dynamic compartment models for industrial aerobic fed-batch fermentation processes.

    Chem. Eng. J. 2021; 420130402

    • Straathof A.J.
    • et al.

    Grand research challenges for sustainable industrial biotechnology.

    Trends Biotechnol. 2019; 37: 1042-1050

    • Yang Z.
    • et al.

    Engineering thermophilic Geobacillus thermoglucosidasius for riboflavin production.

    Microb. Biotechnol. 2021; 14: 363-373

    • Shaw A.J.
    • et al.

    Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    Science. 2016; 353: 583-586

    • Wu W.
    • et al.

    Synthesis and analysis of separation processes for extracellular chemicals generated from microbial conversions.

    BMC Chem. Eng. 2019; 1: 21

    • Yenkie K.M.
    • et al.

    Synthesis and analysis of separation networks for the recovery of intracellular chemicals generated from microbial-based conversions.

    Biotechnol. Biofuels. 2017; 10: 119

    • Zhao X.R.
    • et al.

    Metabolic engineering of Escherichia coli for secretory production of free haem.

    Nat. Catal. 2018; 1: 720-728

    • Luo Z.W.
    • et al.

    Microbial production of methyl anthranilate, a grape flavor compound.

    Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 10749-10756

    • Cui Z.
    • et al.

    Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH.

    Metab. Eng. 2017; 42: 126-133

    • Weusthuis R.A.
    • et al.

    Monascus ruber as cell factory for lactic acid production at low pH.

    Metab. Eng. 2017; 42: 66-73

    • Kim G.B.
    • et al.

    Machine learning applications in systems metabolic engineering.

    Curr. Opin. Biotechnol. 2020; 64: 1-9

    • Zhou Z.
    • et al.

    Optimizing chemical reactions with deep reinforcement learning.

    ACS Cent. Sci. 2017; 3: 1337-1344

    • Zou X.
    • et al.

    Systematic strategies for developing phage resistant Escherichia coli strains.

    Nat. Commun. 2022; 13: 4491

    • Vemuri G.
    • et al.

    Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions.

    J. Ind. Microbiol. Biotechnol. 2002; 28: 325-332

    • Lee S.J.
    • et al.

    Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production.

    Appl. Environ. Microbiol. 2006; 72: 1939-1948

    • Song H.
    • et al.

    Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence.

    Appl. Microbiol. Biotechnol. 2008; 79: 263-272

    • Choi S.
    • et al.

    Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification.

    Biotechnol. Bioeng. 2016; 113: 2168-2177

    • Lee J.A.
    • et al.

    Synthesis, characterization, and application of fully biobased and biodegradable nylon-4, 4 and-5, 4.

    ACS Sustain. Chem. Eng. 2020; 8: 5604-5614

    • Haas R.
    • Nikel P.I.

    Challenges and opportunities in bringing nonbiological atoms to life with synthetic metabolism.

    Trends Biotechnol. 2022; ()

    • Choi Y.
    • et al.

    Recombinant Escherichia coli as a biofactory for various single-and multi-element nanomaterials.

    Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 5944-5949

    • Choi Y.
    • Lee S.Y.

    Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages.

    Nat. Rev. Chem. 2020; 4: 638-656

  • spot_img

    Latest Intelligence

    spot_img