Zephyrnet Logo

Challenges and potential solutions for nanosensors intended for use with foods

Date:

  • 1.

    Food safety. World Health Organization https://www.who.int/health-topics/food-safety/ (2020).

  • 2.

    Devleesschauwer, B., Haagsma, J. A., Mangen, M.-J. J., Lake, R. J. & Havelaar, A. H. in Food Safety Economics, Food Microbiology and Food Safety (ed. Roberts, T.) 107–122 (Springer, 2018).

  • 3.

    Fritsche, J. Recent developments and digital perspectives in food safety and authenticity. J. Agric. Food Chem. 66, 7562–7567 (2018).

    CAS  Google Scholar 

  • 4.

    Zhang, L., Peng, D., Liang, R.-P. & Qiu, J.-D. Graphene-based optical nanosensors for detection of heavy metal ions. Trends Anal. Chem. 102, 280–289 (2018).

    CAS  Google Scholar 

  • 5.

    Wang, D. et al. Functionalized copper nanoclusters-based fluorescent probe with aggregation-induced emission property for selective detection of sulfide ions in food additives. J. Agric. Food Chem. 68, 11301–11308 (2020).

    CAS  Google Scholar 

  • 6.

    Tang, N. et al. A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sens. 4, 726–732 (2019).

    CAS  Google Scholar 

  • 7.

    Xiao, X. et al. Rational engineering of chromic material as near-infrared ratiometric fluorescent nanosensor for H2S monitoring in real food samples. Sens. Actuators B 323, 128707 (2020).

    CAS  Google Scholar 

  • 8.

    Yang, T. et al. Real-time monitoring of pesticide translocation in tomato plants by surface-enhanced Raman spectroscopy. Anal. Chem. 91, 2093–2099 (2019).

    CAS  Google Scholar 

  • 9.

    Wu, Y. et al. Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor. Sens. Actuators B 316, 128107 (2020).

    CAS  Google Scholar 

  • 10.

    Wang, Y., Schill, K. M., Fry, H. C. & Duncan, T. V. A quantum dot nanobiosensor for rapid detection of botulinum neurotoxin serotype E. ACS Sens. 5, 2118–2127 (2020).

    CAS  Google Scholar 

  • 11.

    Xiong, Y., Zhang, D., Hao, Y., Liu, Y. & Si, M. Label-free detection of wild mushrooms DNA based on surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 51, 46–54 (2020).

    CAS  Google Scholar 

  • 12.

    Rippa, M. et al. Octupolar plasmonic nanosensor based on ordered arrays of triangular Au nanopillars for selective rotavirus detection. ACS Appl. Nano Mater. 3, 4837–4844 (2020).

    CAS  Google Scholar 

  • 13.

    Kearns, H., Goodacre, R., Jamieson, L. E., Graham, D. & Faulds, K. SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Anal. Chem. 89, 12666–12673 (2017).

    CAS  Google Scholar 

  • 14.

    Jimenez-Falcao, S. et al. Enzyme-controlled mesoporous nanosensor for the detection of living Saccharomyces cerevisiae. Sens. Actuators B 303, 127197 (2020).

    CAS  Google Scholar 

  • 15.

    Ehgartner, J. et al. Simultaneous determination of oxygen and pH inside microfluidic devices using core–shell nanosensors. Anal. Chem. 88, 9796–9804 (2016).

    CAS  Google Scholar 

  • 16.

    Gupta, S. P., Pawbake, A. S., Sathe, B. R., Late, D. J. & Walke, P. S. Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature. Sens. Actuators B 293, 83–92 (2019).

    CAS  Google Scholar 

  • 17.

    Borisov, S. M., Mayr, T. & Klimant, I. Poly(styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors. Anal. Chem. 80, 573–582 (2008).

    CAS  Google Scholar 

  • 18.

    Nanotechnologies—Vocabulary—Part 1: Core Terms ISO/TS 80004-1:2015(en) (ISO, 2015).

  • 19.

    Wang, Y. & Duncan, T. V. Nanoscale sensors for assuring the safety of food products. Curr. Opin. Biotechnol. 44, 74–86 (2017).

    CAS  Google Scholar 

  • 20.

    Duncan, T. V. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363, 1–24 (2011).

    CAS  Google Scholar 

  • 21.

    Caon, T., Martelli, S. M. & Fakhouri, F. M. in Nanobiosensors (ed. Grumezescu, A. M.) 773–804 (Academic Press, 2017).

  • 22.

    Srivastava, A. K., Dev, A. & Karmakar, S. Nanosensors and nanobiosensors in food and agriculture. Environ. Chem. Lett. 16, 161–182 (2018).

    CAS  Google Scholar 

  • 23.

    Vikesland, P. J. Nanosensors for water quality monitoring. Nat. Nanotechnol. 13, 651–660 (2018).

    CAS  Google Scholar 

  • 24.

    Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).

    CAS  Google Scholar 

  • 25.

    Schebesta, H. & Candel, J. J. L. Game-changing potential of the EU’s Farm to Fork Strategy. Nat. Food 1, 586–588 (2020).

    Google Scholar 

  • 26.

    Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    CAS  Google Scholar 

  • 27.

    Fuertes, G. et al. Intelligent packaging systems: sensors and nanosensors to monitor food quality and safety. J. Sens. 2016, 4046061 (2016).

    Google Scholar 

  • 28.

    Kempahanumakkagari, S., Deep, A., Kim, K.-H., Kumar Kailasa, S. & Yoon, H.-O. Nanomaterial-based electrochemical sensors for arsenic—a review. Biosens. Bioelectron. 95, 106–116 (2017).

    CAS  Google Scholar 

  • 29.

    Weng, X., Chen, L., Neethirajan, S. & Duffield, T. Development of quantum dots-based biosensor towards on-farm detection of subclinical ketosis. Biosens. Bioelectron. 72, 140–147 (2015).

    CAS  Google Scholar 

  • 30.

    Weerathunge, P. et al. Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor. Anal. Chem. 91, 3270–3276 (2019).

    CAS  Google Scholar 

  • 31.

    Yang, T. et al. Mapping of pesticide transmission on biological tissues by surface enhanced Raman microscopy with a gold nanoparticle mirror. ACS Appl. Mater. Interfaces 11, 44894–44904 (2019).

    CAS  Google Scholar 

  • 32.

    Hayter, C. S., Rasmussen, E. & Rooksby, J. H. Beyond formal university technology transfer: innovative pathways for knowledge exchange. J. Technol. Transf. 45, 1–8 (2020).

    Google Scholar 

  • 33.

    Van Norman, G. A. & Eisenkot, R. Technology transfer: from the research bench to commercialization: part 2: the commercialization process. JACC Basic Transl. Sci. 2, 197–208 (2017).

    Google Scholar 

  • 34.

    What is the process of technology transfer? Centers of Disease Control and Prevention https://www.cdc.gov/os/technology/techtransfer/technology-transfer-process.htm (2021).

  • 35.

    Héder, M. From NASA to EU: the evolution of the TRL scale in public sector innovation. Innov. J. 22, 3 (2017).

    Google Scholar 

  • 36.

    Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions— Preparing for Our Future: Developing A Common Strategy for Key Enabling Technologies in the EU (Commission of the European Communities, 2009).

  • 37.

    Milana, S. The lab-to-fab journey of 2D materials. Nat. Nanotechnol. 14, 919–921 (2019).

    CAS  Google Scholar 

  • 38.

    Paliwal, R., Babu, R. J. & Palakurthi, S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 15, 1527–1534 (2014).

    CAS  Google Scholar 

  • 39.

    Fadel, T. R. et al. Toward the responsible development and commercialization of sensor nanotechnologies. ACS Sens. 1, 207–216 (2016).

    CAS  Google Scholar 

  • 40.

    Stavis, S. M., Fagan, J. A., Stopa, M. & Liddle, J. A. Nanoparticle manufacturing—heterogeneity through processes to products. ACS Appl. Nano Mater. 1, 4358–4385 (2018).

    CAS  Google Scholar 

  • 41.

    Peng, H.-I., Krauss, T. D. & Miller, B. L. Aging induced Ag nanoparticle rearrangement under ambient atmosphere and consequences for nanoparticle-enhanced DNA biosensing. Anal. Chem. 82, 8664–8670 (2010).

    CAS  Google Scholar 

  • 42.

    Shi, Y., Ji, Y., Hui, F. & Lanza, M. On the ageing mechanisms of graphene-on-metal electrodes. In Proc. 10th Spanish Conference on Electron Devices (CDE) (Eds. Álvarez, Á. L. & Coya, C.) 1–4 (IEEE, 2015).

  • 43.

    Ahn, J. J., Kim, Y., Corley, E. A. & Scheufele, D. A. Laboratory safety and nanotechnology workers: an analysis of current guidelines in the USA. NanoEthics 10, 5–23 (2016).

    Google Scholar 

  • 44.

    Lanza, G. A., Perez-Taborda, J. A. & Avila, A. Time temperature indicators (TTIs) based on silver nanoparticles for monitoring of perishables products. J. Phys. Conf. Ser. 1247, 012055 (2019).

    CAS  Google Scholar 

  • 45.

    Duncan, T. V. & Pillai, K. Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl. Mater. Interfaces 7, 2–19 (2015).

    CAS  Google Scholar 

  • 46.

    Guidance for Industry: Preparation of Premarket Submissions for Food Contact Substances: Chemistry Recommendations (US FDA, 2007); http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/IngredientsAdditivesGRASPackaging/ucm081818.htm

  • 47.

    Werner, B. G., Koontz, J. L. & Goddard, J. M. Hurdles to commercial translation of next generation active food packaging technologies. Curr. Opin. Food Sci. 16, 40–48 (2017).

    Google Scholar 

  • 48.

    Mitter, N. & Hussey, K. Moving policy and regulation forward for nanotechnology applications in agriculture. Nat. Nanotechnol. 14, 508–510 (2019).

    CAS  Google Scholar 

  • 49.

    Horwitz, W. Evaluation of analytical methods used for regulation of foods and drugs. Anal. Chem. 54, 67–76 (1982).

    Google Scholar 

  • 50.

    Guidelines for the Validation of Chemical Methods in Food, Feed, Cosmetics, and Veterinary Products 3rd edn (US FDA, 2019).

  • 51.

    Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds 3rd edn (US FDA, 2019).

  • 52.

    Appendix K: Guidelines for Dietary Supplements and Botanicals, Part 1 AOAC Guidelines for Single-Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals (AOAC International, 2013).

  • 53.

    UN FAO Codex Alimentarius Commission Procedural Manual 21st edn (Secretariat of the Joint FAO/WHO Food Standards Programme, 2014).

  • 54.

    Taverniers, I., De Loose, M. & Van Bockstaele, E. Trends in quality in the analytical laboratory. I. Traceability and measurement uncertainty of analytical results. Trends Anal. Chem. 23, 480–490 (2004).

    CAS  Google Scholar 

  • 55.

    Faucher, S., Le Coustumer, P. & Lespes, G. Nanoanalytics: history, concepts, and specificities. Environ. Sci. Pollut. Res. 26, 5267–5281 (2019).

    Google Scholar 

  • 56.

    Taverniers, I., De Loose, M. & Van Bockstaele, E. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal. Chem. 23, 535–552 (2004).

    CAS  Google Scholar 

  • 57.

    Horwitz, W. Problems of sampling and analytical methods. J. AOAC 59, 1197–1203 (1976).

    CAS  Google Scholar 

  • 58.

    Tsai-hsuan, Ku. S. Forming interdisciplinary expertise: one organization’s journey on the road to translational nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4, 366–377 (2012).

    Google Scholar 

  • 59.

    Faigman, D. L., Slobogin, C. & Monahan, J. Gatekeeping science: using the structure of scientific research to distinguish between admissibility and weight in expert testimony. Northwest. Univ. Law Rev. 110, 859–904 (2016).

    Google Scholar 

  • 60.

    Faigman, D. L. Is science different for lawyers? Science 297, 339–340 (2002).

    CAS  Google Scholar 

  • 61.

    Rodricks, J. V. in Reference Manual on Scientific Evidence 3rd edn (ed. Council, N. R.) 503–548 (National Academies Press, 2011).

  • 62.

    Murphy, M. J. in Veterinary Toxicology 3rd edn (ed Gupta, R. C.) 173–194 (Academic Press, 2018).

  • 63.

    Report to the President—Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods (Executive Office of the President of the United States, President’s Council of Advisors on Science and Technology, 2016).

  • 64.

    Muehlethaler, C., Leona, M. & Lombardi, J. R. Towards a validation of surface-enhanced Raman scattering (SERS) for use in forensic science: repeatability and reproducibility experiments. Forensic Sci. Int. 268, 1–13 (2016).

    CAS  Google Scholar 

  • 65.

    Popa, C., Holvoet, K., Van Montfort, T., Groeneveld, F. & Simoens, S. Risk–return analysis of the biopharmaceutical industry as compared to other industries. Front. Pharmacol. 9, 1108 (2018).

    Google Scholar 

  • 66.

    Ledley, F. D., McCoy, S. S., Vaughan, G. & Cleary, E. G. Profitability of large pharmaceutical companies compared with other large public companies. JAMA 323, 834–843 (2020).

    Google Scholar 

  • 67.

    Han, J.-W., Ruiz-Garcia, L., Qian, J.-P. & Yang, X.-T. Food packaging: a comprehensive review and future trends. Compr. Rev. Food Sci. Food Saf. 17, 860–877 (2018).

    Google Scholar 

  • 68.

    Chowdhury, P., Gogoi, M., Borchetia, S. & Bandyopadhyay, T. Nanotechnology applications and intellectual property rights in agriculture. Environ. Chem. Lett. 15, 413–419 (2017).

    CAS  Google Scholar 

  • 69.

    Morris, E. M. The irrelevance of nanotechnology patents. Conn. Law Rev. 49, 499–552 (2016).

    Google Scholar 

  • 70.

    Zingg, R. & Fischer, M. The nanotechnology patent thicket revisited. J. Nanopart. Res. 20, 267 (2018).

    Google Scholar 

  • 71.

    Rothaermel, F. T. & Thursby, M. The nanotech versus the biotech revolution: sources of productivity in incumbent firm research. Res. Policy 36, 832–849 (2007).

    Google Scholar 

  • 72.

    Atalla, K. et al. in Wireless Computing in Medicine (ed Eshaghian‐Wilner, M. M.) 567–600 (Wiley, 2016).

  • 73.

    Genet, C., Errabi, K. & Gauthier, C. Which model of technology transfer for nanotechnology? A comparison with biotech and microelectronics. Technovation 32, 205–215 (2012).

    Google Scholar 

  • 74.

    Wu, L., Zhu, H., Chen, H. & Roco, M. C. Comparing nanotechnology landscapes in the US and China: a patent analysis perspective. J. Nanopart. Res. 21, 180 (2019).

    Google Scholar 

  • 75.

    Weiss, K. D. & Almeda, L. G. Competitive intelligence—understanding current trends in the patent landscape for nanomaterials. In Proc. 17th IEEE 17th International Conference on Nanotechnology (IEEE-NANO) 1003–1009 (IEEE, 2017).

  • 76.

    Tahmooresnejad, L. & Beaudry, C. Collaboration or funding: lessons from a study of nanotechnology patenting in Canada and the United States. J. Technol. Transf. 44, 741–777 (2019).

    Google Scholar 

  • 77.

    Rausand, M. & Utne, I. B. Product safety—principles and practices in a life cycle perspective. Saf. Sci. 47, 939–947 (2009).

    Google Scholar 

  • 78.

    Duncan, T. V. & Singh, G. in: Nanotechnology in Foods 2nd edn (eds Chaudhry, Q. et al.) Ch. 8 (Royal Society of Chemistry, 2017).

  • 79.

    Zhang, M. et al. Detection of engineered nanoparticles in aquatic environments: current status and challenges in enrichment, separation, and analysis. Environ. Sci. Nano 6, 709–735 (2019).

    CAS  Google Scholar 

  • 80.

    Fadeel, B. et al. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 13, 537–543 (2018).

    CAS  Google Scholar 

  • 81.

    Weiner, R. G., Sharma, A., Xu, H., Gray, P. J. & Duncan, T. V. Assessment of mass transfer from poly(ethylene) nanocomposites containing noble-metal nanoparticles: a systematic study of embedded particle stability. ACS Appl. Nano Mater. 1, 5188–5196 (2018).

    CAS  Google Scholar 

  • 82.

    Gray, P. J. et al. Influence of different acids on the transport of CdSe quantum dots from polymer nanocomposites to food simulants. Environ. Sci. Technol. 52, 9468–9477 (2018).

    CAS  Google Scholar 

  • 83.

    Bott, J. & Franz, R. Investigations into the potential abrasive release of nanomaterials due to material stress conditions—part A: carbon black nano-particulates in plastic and rubber composites. Appl. Sci. 9, 214 (2019).

    CAS  Google Scholar 

  • 84.

    Addo Ntim, S. et al. Effects of consumer use practices on nanosilver release from commercially available food contact materials. Food Addit. Contam. A 35, 2279–2290 (2018).

    CAS  Google Scholar 

  • 85.

    Liu, C., Leng, W. & Vikesland, P. J. Controlled evaluation of the impacts of surface coatings on silver nanoparticle dissolution rates. Environ. Sci. Technol. 52, 2726–2734 (2018).

    CAS  Google Scholar 

  • 86.

    Molleman, B. & Hiemstra, T. Time, pH, and size dependency of silver nanoparticle dissolution: the road to equilibrium. Environ. Sci. Nano 4, 1314–1327 (2017).

    CAS  Google Scholar 

  • 87.

    Garg, S., Rong, H., Miller, C. J. & Waite, T. D. Oxidative dissolution of silver nanoparticles by chlorine: implications to silver nanoparticle fate and toxicity. Environ. Sci. Technol. 50, 3890–3896 (2016).

    CAS  Google Scholar 

  • 88.

    Babik, K. R., Dahm, M. M., Dunn, K. H., Dunn, K. L. & Schubauer-Berigan, M. K. Characterizing workforces exposed to current and emerging non-carbonaceous nanomaterials in the U.S. J. Occup. Environ. Hygiene 15, 44–56 (2018).

    CAS  Google Scholar 

  • 89.

    Iavicoli, I., Leso, V., Beezhold, D. H. & Shvedova, A. A. Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol. Appl. Pharmacol. 329, 96–111 (2017).

    CAS  Google Scholar 

  • 90.

    Salieri, B., Turner, D. A., Nowack, B. & Hischier, R. Life cycle assessment of manufactured nanomaterials: Where are we? NanoImpact 10, 108–120 (2018).

    Google Scholar 

  • 91.

    Bandodkar, A. J., Jeerapan, I. & Wang, J. Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1, 464–482 (2016).

    CAS  Google Scholar 

  • 92.

    Upadhyayula, V. K. K., Gadhamshetty, V., Shanmugam, K., Souihi, N. & Tysklind, M. Advancing game changing academic research concepts to commercialization: a life cycle assessment (LCA) based sustainability framework for making informed decisions in technology valley of death (TVD). Resour. Conserv. Recycl. 133, 404–416 (2018).

    Google Scholar 

  • 93.

    Buckley, J. A., Thompson, P. B. & Whyte, K. P. Collingridge’s dilemma and the early ethical assessment of emerging technology: the case of nanotechnology enabled biosensors. Technol. Soc. 48, 54–63 (2017).

    Google Scholar 

  • 94.

    Li, Z. et al. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat. Plants 5, 856–866 (2019).

    CAS  Google Scholar 

  • 95.

    Ye, Y. et al. Portable smartphone-based QDs for the visual onsite monitoring of fluoroquinolone antibiotics in actual food and environmental samples. ACS Appl. Mater. Interfaces 12, 14552–14562 (2020).

    CAS  Google Scholar 

  • 96.

    Su, D. et al. Smartphone-assisted robust sensing platform for on-site quantitation of 2,4-dichlorophenoxyacetic acid using red emissive carbon dots. Anal. Chem. 92, 12716–12724 (2020).

    CAS  Google Scholar 

  • 97.

    Li, Z. et al. Agricultural nanodiagnostics for plant diseases: recent advances and challenges. Nanoscale Adv. 2, 3083–3094 (2020).

    CAS  Google Scholar 

  • 98.

    Yigezu, Y. A. et al. Enhancing adoption of agricultural technologies requiring high initial investment among smallholders. Technol. Forecast. Soc. Change 134, 199–206 (2018).

    Google Scholar 

  • 99.

    Balehegn, M. et al. Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Glob. Food Sec. 26, 100372 (2020).

    Google Scholar 

  • 100.

    Genus, A. & Stirling, A. Collingridge and the dilemma of control: towards responsible and accountable innovation. Res. Policy 47, 61–69 (2018).

    Google Scholar 

  • 101.

    Duncan, T. V. The communication challenges presented by nanofoods. Nat. Nanotechnol. 6, 683–688 (2011).

    CAS  Google Scholar 

  • 102.

    Bartolucci, C. et al. Green nanomaterials fostering agrifood sustainability. Trends Anal. Chem. 125, 115840 (2020).

    CAS  Google Scholar 

  • 103.

    Boholm, Å. & Larsson, S. What is the problem? A literature review on challenges facing the communication of nanotechnology to the public. J. Nanopart. Res. 21, 86 (2019).

    Google Scholar 

  • 104.

    Jacobsen, L. F. et al. Improving internal communication between marketing and technology functions for successful new food product development. Trends Food Sci. Technol. 37, 106–114 (2014).

    CAS  Google Scholar 

  • 105.

    Siegrist, M. Factors influencing public acceptance of innovative food technologies and products. Trends Food Sci. Technol. 19, 603–608 (2008).

    CAS  Google Scholar 

  • 106.

    Klerkx, L. & Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Sec. 24, 100347 (2020).

    Google Scholar 

  • 107.

    Zang, F. et al. Ultrasensitive ebola virus antigen sensing via 3D nanoantenna arrays. Adv. Mater. 31, 1902331 (2019).

    Google Scholar 

  • 108.

    Kurdekar, A. D. et al. Streptavidin-conjugated gold nanoclusters as ultrasensitive fluorescent sensors for early diagnosis of HIV infection. Sci. Adv. 4, eaar6280 (2018).

    CAS  Google Scholar 

  • 109.

    Agrawal, A., Majdi, J., Clouse, K. A. & Stantchev, T. Electron-beam-lithographed nanostructures as reference materials for label-free scattered-light biosensing of single filoviruses. Sensors 18, 1670 (2018).

    Google Scholar 

  • 110.

    Wang, Y., Fry, H. C., Skinner, G. E., Schill, K. M. & Duncan, T. V. Detection and quantification of biologically active botulinum neurotoxin serotypes A and B using a forster resonance energy transfer-based quantum dot nanobiosensor. ACS Appl. Mater. Interfaces 9, 31446–31457 (2017).

    CAS  Google Scholar 

  • 111.

    New Era of Smarter Food Safety: FDA’s Blueprint for the Future (US FDA, 2020).

  • 112.

    Lynn, G. S. & Akgün, A. E. Innovation strategies under uncertainty: a contingency approach for new product development. Eng. Manage. J. 10, 11–18 (1998).

    Google Scholar 

  • Checkout PrimeXBT
    Trade with the Official CFD Partners of AC Milan
    Source: https://www.nature.com/articles/s41565-021-00867-7

    spot_img

    Latest Intelligence

    spot_img