Zephyrnet Logo

Biomimetic 3D living materials powered by microorganisms

Date:

    • Flemming H.C.

    Bacteria and archaea on Earth and their abundance in biofilms.

    Nat. Rev. Microbiol. 2019; 17: 247-260

    • Falkowski P.G.

    The role of phytoplankton photosynthesis in global biogeochemical cycles.

    Photosynth. Res. 1994; 39: 235-258

    • Demain A.L.

    Microbial biotechnology.

    Trends Biotechnol. 2000; 18: 26-31

    • Desai S.H.
    • Atsumi S.

    Photosynthetic approaches to chemical biotechnology.

    Curr. Opin. Biotechnol. 2012; 24: 1031-1036

    • Rosenberg J.N.
    • et al.

    A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution.

    Curr. Opin. Biotechnol. 2008; 19: 430-436

    • Rizwan M.
    • et al.

    Exploring the potential of microalgae for new biotechnology applications and beyond: a review.

    Renew. Sust. Energ. Rev. 2018; 92: 394-404

    • Nguyen P.Q.
    • et al.

    Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials.

    Adv. Mater. 2018; 30e1704847

    • Huang J.
    • et al.

    Programmable and printable Bacillus subtilis biofilms as engineered living materials.

    Nat. Chem. Biol. 2019; 15: 34-41

    • Chen A.Y.
    • et al.

    Synthesis and patterning of tunable multiscale materials with engineered cells.

    Nat. Mater. 2014; 13: 515-523

    • Nguyen P.Q.
    • et al.

    Programmable biofilm-based materials from engineered curli nanofibres.

    Nat. Commun. 2014; 5: 4945

    • Duraj-Thatte A.M.
    • et al.

    Genetically programmable self-regenerating bacterial hydrogels.

    Adv. Mater. 2019; 311901826

    • Connell J.L.
    • et al.

    3D printing of microscopic bacterial communities.

    Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 18380-18385

    • Schaffner M.
    • et al.

    3D printing of bacteria into functional complex materials.

    Sci. Adv. 2017; 3eaao6804

    • Dzobo K.
    • et al.

    Recent trends in decellularized extracellular matrix bioinks for 3D printing: an updated review.

    Int. J. Mol. Sci. 2019; 18: 4628

    • Kloxin A.M.
    • et al.

    Photodegradable hydrogels for dynamic tuning of physical and chemical properties.

    Science. 2009; 324: 59-63

    • Ma X.
    • et al.

    Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture.

    Biomaterials. 2018; 185: 310-321

    • Wangpraseurt D.
    • et al.

    Bionic 3D printed corals.

    Nat. Commun. 2020; 11: 1748

    • Datta P.
    • et al.

    3D bioprinting for reconstituting the cancer microenvironment.

    NPJ Precis. Oncol. 2020; 4: 18

    • Murphy S.V.
    • Atala A.

    3D bioprinting of tissues and organs.

    Nat. Biotechnol. 2014; 32: 773-785

    • Lode A.
    • et al.

    Green bioprinting: fabrication of photosynthetic algae-laden hydrogel scaffolds for biotechnological and medical applications.

    Eng. Life Sci. 2015; 15: 177-183

    • Yu C.
    • et al.

    Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications.

    Chem. Rev. 2020; 120: 10695-10743

    • Zhao S.
    • et al.

    3D printing of functional microalgal silk structures for environmental applications.

    ACS Biomater. Sci. Eng. 2019; 5: 4808-4816

    • Unagolla J.M.
    • Jayasuriya A.C.

    Hydrogel-based 3D bioprinting: a comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives.

    Appl. Mater. Today. 2020; 18100479

    • Zhou L.
    • et al.

    A review of 3D printing technologies for soft polymer materials.

    Adv. Funct. Mater. 2020; 302000187

    • Kim H.N.
    • et al.

    Patterning methods for polymers in cell and tissue engineering.

    Ann. Biomed. Eng. 2012; 40: 1339-1355

    • Occhetta P.
    • et al.

    Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning.

    Biofabrication. 2013; 5035002

    • Zhu W.
    • et al.

    3D printing of functional biomaterials for tissue engineering.

    Curr. Opin. Biotechnol. 2016; 40: 103-112

    • Hwang H.H.
    • et al.

    3D-printing of functional biomedical microdevices via light- and extrusion-based approaches.

    Small Methods. 2018; 21700277

    • Poomathi N.
    • et al.

    3D printing in tissue engineering: a state of the art review of technologies and biomaterials.

    Rapid Prototyp. J. 2020; 26: 1313-1334

    • Zhu W.
    • et al.

    Rapid continuous 3D printing of customizable peripheral nerve guidance conduits.

    Mater. Today (Kidlington). 2018; 21: 951-959

    • Tang M.
    • et al.

    Rapid 3D bioprinting of glioblastoma model mimicking native biophysical heterogeneity.

    Small. 2021; 172006050

    • Hwang H.H.
    • et al.

    High throughput direct 3D bioprinting in multiwell plates.

    Biofabrication. 2021; 13025007

    • Wang P.
    • et al.

    Controlled growth factor release in 3D-printed hydrogels.

    Adv. Healthc. Mater. 2020; 91900977

    • Berry D.B.
    • et al.

    A 3D tissue-printing approach for validation of diffusion tensor imaging in skeletal muscle.

    Tissue Eng. A. 2017; 23: 980-988

    • Turner B.N.
    • Gold S.A.

    A review of melt extrusion additive manufacturing processes: II. Materials, dimensi
    onal accuracy, and surface roughness.

    Rapid Prototyp. J. 2015; 21: 250-261

    • Zein I.
    • et al.

    Fused deposition modeling of novel scaffold architectures for tissue engineering applications.

    Biomaterials. 2002; 23: 1169-1185

    • Cohen D.L.
    • et al.

    Direct freeform fabrication of seeded hydrogels in arbitrary geometries.

    Tissue Eng. 2006; 12: 1325-1335

    • Vaezi M.
    • et al.

    A review on 3D micro-additive manufacturing technologies.

    Int. J. Adv. Manuf. Technol. 2013; 67: 1721-1754

    • Zhang Z.
    • et al.

    Evaluation of bioink printability for bioprinting applications.

    Appl. Phys. Rev. 2018; 5041304

    • Zimmermann R.
    • et al.

    High resolution bioprinting of multi-component hydrogels.

    Biofabrication. 2019; 11045008

    • Zhao Z.
    • et al.

    Engineering materials with light: recent progress in digital light processing based 3D printing.

    J. Mater. Chem. C. 2020; 8: 13896-13917

    • You S.
    • et al.

    High-fidelity 3D printing using flashing photopolymerization.

    Addit. Manuf. 2019; 30100834

    • Tumbleston J.R.
    • et al.

    Continuous liquid interface production of 3D objects.

    Science. 2015; 347: 1349-1352

    • You S.
    • et al.

    Mitigating scattering effects in light-based three-dimensional printing using machine learning.

    J. Manuf. Sci. Eng. 2020; 1420811002

    • Bagheri A.
    • Jin J.

    Photopolymerization in 3D printing.

    ACS Appl. Polym. Mater. 2019; 1: 593-611

    • You S.
    • et al.

    Nanoscale 3D printing of hydrogels for cellular tissue engineering.

    J. Mater. Chem. B. 2018; 6: 2187-2197

    • You S.
    • et al.

    Microstereolithography.

    in: Biofabrication and 3D tissue modeling. Royal Society of Chemistry, 2019: 1-21

    • You S.
    • et al.

    Projection printing of ultrathin structures with nanoscale thickness control.

    ACS Appl. Mater. Interfaces. 2019; 11: 16059-16064

    • Ge Q.
    • et al.

    Projection micro stereolithography based 3D printing and its applications.

    Int. J. Extrem. Manuf. 2020; 2022004

    • Rademakers T.
    • et al.

    Oxygen and nutrient delivery in tissue engineering: approaches to graft vascularization.

    J. Tissue Eng. Regen. Med. 2019; 13: 1815-1829

    • Chen H.
    • et al.

    Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes.

    Sci. Adv. 2020; 6eaba4311

    • Cohen J.E.
    • et al.

    An innovative biologic system for photon-powered myocardium in the ischemic heart.

    Sci. Adv. 2017; 3e1603078

    • Qiao Y.
    • et al.

    Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer.

    Sci. Adv. 2020; 6eaba5996

    • Chávez M.N.
    • et al.

    Towards autotrophic tissue engineering: photosynthetic gene therapy for regeneration.

    Biomaterials. 2016; 75: 25-36

    • Hopfner U.
    • et al.

    Development of photosynthetic biomaterials for in vitro tissue engineering.

    Acta Biomater. 2014; 10: 2712-2717

    • Centeno-Cerdas C.
    • et al.

    Development of photosynthetic sutures for the local delivery of oxygen and recombinant growth factors in wounds.

    Acta Biomater. 2018; 81: 184-194

    • Trampe E.
    • et al.

    Functionalized bioink with optical sensor nanoparticles for O2 imaging in 3D-bioprinted constructs.

    Adv. Funct. Mater. 2018; 281804411

    • Maharjan S.
    • et al.

    Symbiotic photosynthetic oxygenation within 3D-bioprinted vascularized tissues.

    Matter. 2021; 4: 217-240

    • Haraguchi Y.
    • et al.

    Thicker three-dimensional tissue from a “symbiotic recycling system” combining mammalian cells and algae.

    Sci. Rep. 2017; 7: 41594

    • Kolesky D.B.
    • et al.

    Three-dimensional bioprinting of thick vascularized tissues.

    Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 3179-3184

    • Fields F.J.
    • et al.

    Effects of the microalgae Chlamydomonas on gastrointestinal health.

    J. Funct. Foods. 2020; 65103738

    • Champenois J.
    • et al.

    Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe.

    J. Appl. Phycol. 2015; 27: 1845-1851

    • Akolpoglu M.B.
    • et al.

    High-yield production of biohybrid microalgae for on-demand cargo delivery.

    Adv. Sci. (Weinh.). 2020; 72001256

    • Koutra E.
    • et al.

    Bio-based products from microalgae cultivated in digestates.

    Trends Biotechnol. 2018; 36: 819-833

    • Barty-King C.H.
    • et al.

    Mechanochromic, structurally colored, and edible hydrogels prepared from hydroxypropyl cellulose and gelatin.

    Adv. Mater. 2021; 332102112

    • Guo J.
    • et al.

    Light-driven fine chemical production in yeast biohybrids.

    Science. 2018; 362: 813-816

    • Saha A.
    • et al.

    Additive manufacturing of catalytically active living materials.

    ACS Appl. Mater. Interfaces. 2018; 10: 13373-13380

    • Johnston T.G.
    • et al.

    Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation.

    Nat. Commun. 2020; 11: 563

    • Ning E.
    • et al.

    3D bioprinting of mature bacterial biofilms for antimicrobial resistance drug testing.

    Biofabrication. 2019; 11045018

  • Biodiesel from microalgae.

    Biotechnol. Adv. 2007; 25
    : 294-306

    • Balzani V.
    • et al.

    Solar-driven chemistry: towards new catalytic solutions for a sustainable world.

    Rend. Lincei Sci. Fis. Nat. 2019; 30: 443-452

    • Tschörtner J.
    • et al.

    Biophotovoltaics: green power generation from sunlight and water.

    Front. Microbiol. 2019; 10: 866

    • Logan B.E.

    Exoelectrogenic bacteria that power microbial fuel cells.

    Nat. Rev. Microbiol. 2009; 7: 375-381

    • Sawa M.
    • et al.

    Electricity generation from digitally printed cyanobacteria.

    Nat. Commun. 2017; 8: 1327

    • Grattieri M.
    • et al.

    Purple bacteria and 3D redox hydrogels for bioinspired photo-bioelectrocatalysis.

    ChemSusChem. 2020; 13: 230-237

    • Yoshida N.
    • et al.

    Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria.

    Sci. Rep. 2016; 6: 21867

    • Joshi S.
    • et al.

    Bacterial nanobionics via 3D printing.

    Nano Lett. 2018; 18: 7448-7456

    • Peralta-Yahya P.P.
    • et al.

    Microbial engineering for the production of advanced biofuels.

    Nature. 2012; 488: 320-328

    • Liu Y.
    • et al.

    Biofuels for a sustainable future.

    Cell. 2021; 184: 1636-1647

    • Wang M.
    • et al.

    Biomass-derived aviation fuels: challenges and perspective.

    Prog. Energy Combust. Sci. 2019; 74: 31-49

    • Lee S.Y.
    • et al.

    A comprehensive metabolic map for production of bio-based chemicals.

    Nat. Catal. 2019; 2: 18-33

    • Brodersen K.E.
    • et al.

    Radiative energy budget reveals high photosynthetic efficiency in symbiont-bearing corals.

    J. R. Soc. Interface. 2014; 1120130997

    • Wangpraseurt D.
    • et al.

    Microscale light management and inherent optical properties of intact corals studied with optical coherence tomography.

    J. R. Soc. Interface. 2019; 1620180567

    • Martin N.
    • et al.

    Synthetic algal–bacteria consortia for space-efficient microalgal growth in a simple hydrogel system.

    J. Appl. Phycol. 2021; 33: 2805-2815

    • Tantimongcolwat T.
    • et al.

    Polyacrylamide hydrogel encapsulated E. coli expressing metal-sensing green fluorescent protein as a potential tool for copper ion determination.

    EXCLI J. 2014; 13: 401-415

    • Rivera-Tarazona L.K.
    • et al.

    Stimuli-responsive engineered living materials.

    Soft Matter. 2021; 17: 785-809

    • Justus K.B.
    • et al.

    A biosensing soft robot: autonomous parsing of chemical signals through integrated organic and inorganic interfaces.

    Sci. Robot. 2019; 4eaax0765

    • Appiah C.
    • et al.

    Living materials herald a new era in soft robotics.

    Adv. Mater. 2019; 311807747

    • Pataranutaporn P.
    • et al.

    Living bits: opportunities and challenges for integrating living microorganisms in human-computer interaction.

    in: AHs ’20: Proceedings of the Augmented Humans International Conference. Association for Computing Machinery, 2020: 1-12

    • Chen X.
    • et al.

    Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators.

    Nat. Nanotechnol. 2014; 9: 137-141

    • Liu X.
    • et al.

    3D Printing of living responsive materials and devices.

    Adv. Mater. 2018; 301704821

    • Liu X.
    • et al.

    Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells.

    Proc. Natl. Acad. Sci. U. S. A. 2017; 114: 2200-2205

    • Smith R.S.H.
    • et al.

    Hybrid living materials: digital design and fabrication of 3D multimaterial structures with programmable biohybrid surfaces.

    Adv. Funct. Mater. 2020; 301907401

    • Singh A.V.
    • et al.

    Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery.

    ACS Nano. 2017; 11: 9759-9769

    • Yin K.
    • et al.

    Microorganism remediation strategies towards heavy metals.

    Chem. Eng. J. 2019; 360: 1553-1563

    • Henriques B.
    • et al.

    A macroalgae-based biotechnology for water remediation: simultaneous removal of Cd, Pb and Hg by living Ulva lactuca.

    J. Environ. Manag. 2017; 191: 275-289

    • Das K.
    • Mukherjee A.K.

    Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India.

    Bioresour. Technol. 2007; 98: 1339-1345

    • Hawari J.
    • et al.

    Microbial degradation of explosives: biotransformation versus mineralization.

    Appl. Microbiol. Biotechnol. 2000; 54: 605-618

    • Nazir M.S.
    • et al.

    Remediation of pesticide in water.

    Sustain. Agric. Rev. 2021; 47: 271-307

    • Delneuville C.
    • et al.
    Single [email protected] porous microcapsules via a sol–gel layer by layer for heavy-metal remediation.

    J. Solgel Sci. Technol. 2019; 89: 244-254

    • Yu F.
    • et al.

    3D printed self-driven thumb-sized motors for in-situ underwater pollutant remediation.

    Sci. Rep. 2017; 7: 41169

    • Wang Y.
    • et al.

    Cost-effective domestic wastewater treatment and bioenergy recovery in an immobilized microalgal-based photoautotrophic microbial fuel cell (PMFC).

    Chem. Eng. J. 2019; 372: 956-965

    • Kalossaka L.M.
    • et al.

    Review: 3D printing hydrogels for the fabrication of soilless cultivation substrates.

    Appl. Mater. Today. 2021; 24101088

    • Wang J.Y.
    • et a
      l.

    Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete.

    Constr. Build. Mater. 2014; 68: 110-119

    • Perez J.J.
    • et al.

    A novel, green, low-cost chitosan–starch hydrogel as potential delivery system for plant growth-promoting bacteria.

    Carbohydr. Polym. 2018; 202: 409-417

    • Wang J.
    • et al.

    Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing.

    Front. Microbiol. 2015; 6: 1088

    • Palin D.
    • et al.

    A bacteria-based self-healing cementitious composite for application in low-temperature marine environments.

    Biomimetics. 2017; 2: 13

    • Wang J.
    • et al.

    A chitosan based pH-responsive hydrogel for encapsulation of bacteria for self-sealing concrete.

    Cem. Concr. Compos. 2018; 93: 309-322

    • Malik S.
    • et al.

    Robotic extrusion of algae-laden hydrogels for large-scale applications.

    Glob. Chall. 2020; 41900064

    • Hughes T.P.
    • et al.

    Spatial and temporal patterns of mass bleaching of corals in the Anthropocene.

    Science. 2018; 359: 80-83

    • Hoegh-Guldberg O.
    • et al.

    Coral reefs under rapid climate change and ocean acidification.

    Science. 2007; 318: 1737-1742

    • Harris D.L.
    • et al.

    Coral reef structural complexity provides important coastal protection from waves under rising sea levels.

    Sci. Adv. 2018; 4eaao4350

    • Putnam H.M.

    Avenues of reef-building coral acclimatization in response to rapid environmental change.

    J. Exp. Biol. 2021; 224jeb239319

    • van Oppen M.J.H.
    • et al.

    Building coral reef resilience through assisted evolution.

    Proc. Natl. Acad. Sci. U. S. A. 2015; 112: 2307-2313

    • Albalawi H.I.
    • et al.

    Sustainable and eco-friendly coral restoration through 3D printing and fabrication.

    ACS Sustain. Chem. Eng. 2021; 9: 12634-12645

    • Sneed J.M.
    • et al.

    The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals.

    Proc. Biol. Sci. 2014; 28120133086

    • Amorim C.G.
    • et al.

    3D printing technology in the environment.

    Springer, 2021: 131-160

    • Pickering H.
    • et al.

    Artificial reefs as a tool to aid rehabilitation of coastal ecosystems: investigating the potential.

    Mar. Pollut. Bull. 1999; 37: 505-514

    • Mohammed J.S.

    Applications of 3D printing technologies in oceanography.

    Methods Oceanogr. 2016; 17: 97-117

    • Riera E.
    • et al.

    Biofilm monitoring as a tool to assess the efficiency of artificial reefs as substrates: toward 3D printed reefs.

    Ecol. Eng. 2018; 120: 230-237

    • Dubbin K.
    • et al.

    Projection microstereolithographic
    microbial bioprinting for engineered biofilms.

    Nano Lett. 2021; 21: 1352-1359

    • Lee H.R.
    • et al.

    Immobilization of planktonic algal spores by inkjet printing.

    Sci. Rep. 2019; 9: 12357

    • Balasubramanian S.
    • et al.

    3D printing for the fabrication of biofilm-based functional living materials.

    ACS Synth. Biol. 2019; 8: 1564-1567

    • Lehner B.A.E.
    • et al.

    A straightforward approach for 3D bacterial printing.

    ACS Synth. Biol. 2017; 6: 1124-1130

    • Qian F.
    • et al.

    Direct writing of tunable living inks for bioprocess intensification.

    Nano Lett. 2019; 19: 5829-5835

  • spot_img

    Latest Intelligence

    spot_img