Zephyrnet Logo

A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower – Nature Nanotechnology

Date:

  • Kammerer, C. et al. Biomimetic and technomimetic single molecular machines. Chem. Lett. 48, 299–308 (2019).

    Article  CAS  Google Scholar 

  • Feringa, B. L. The art of building small: from molecular switches to molecular motors. J. Org. Chem. 72, 6635–6652 (2007).

    Article  CAS  Google Scholar 

  • Bath, J. & Turberfield, A. J. DNA nanomachines. Nat. Nanotechnol. 2, 275–284 (2007).

    Article  CAS  Google Scholar 

  • Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  Google Scholar 

  • Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).

    Article  CAS  Google Scholar 

  • von Delius, M. & Leigh, D. A. Walking molecules. Chem. Soc. Rev. 40, 3656–3676 (2011).

    Article  Google Scholar 

  • Chakraborty, K., Veetil, A. T., Jaffrey, S. R. & Krishnan, Y. Nucleic acid-based nanodevices in biological imaging. Annu. Rev. Biochem. 85, 349–373 (2016).

    Article  CAS  Google Scholar 

  • Cui, C. et al. A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours. Nat. Nanotechnol. 16, 1394–1402 (2021).

    Article  CAS  Google Scholar 

  • Stommer, P. et al. A synthetic tubular molecular transport system. Nat. Commun. 12, 4393 (2021).

    Article  Google Scholar 

  • Li, Y. et al. Leakless end-to-end transport of small molecules through micron-length DNA nanochannels. Sci. Adv. 8, eabq4834 (2022).

    Article  CAS  Google Scholar 

  • Kamiya, Y. & Asanuma, H. Light-driven DNA nanomachine with a photoresponsive molecular engine. Acc. Chem. Res. 47, 1663–1672 (2014).

    Article  CAS  Google Scholar 

  • Marras, A. E., Zhou, L., Su, H. J. & Castro, C. E. Programmable motion of DNA origami mechanisms. Proc. Natl Acad. Sci. USA 112, 713–718 (2015).

    Article  CAS  Google Scholar 

  • Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article  CAS  Google Scholar 

  • Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).

    Article  CAS  Google Scholar 

  • Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    Article  CAS  Google Scholar 

  • Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).

    Article  CAS  Google Scholar 

  • Pumm, A. K. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).

    Article  CAS  Google Scholar 

  • Shi, X. et al. Sustained unidirectional rotation of a self-organized DNA rotor on a nanopore. Nat. Phys. 18, 1105 (2022).

    Article  CAS  Google Scholar 

  • Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    Article  CAS  Google Scholar 

  • Baroncini, M. et al. Making and operating molecular machines: a multidisciplinary challenge. ChemistryOpen 7, 169–179 (2018).

    Article  CAS  Google Scholar 

  • Valero, J., Pal, N., Dhakal, S., Walter, N. G. & Famulok, M. A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks. Nat. Nanotechnol. 13, 496–503 (2018).

    Article  CAS  Google Scholar 

  • Poppleton, E., Mallya, A., Dey, S., Joseph, J. & Sulc, P. Nanobase.org: a repository for DNA and RNA nanostructures. Nucleic Acids Res. 50, D246–D252 (2022).

    Article  CAS  Google Scholar 

  • Zhou, L., Marras, A. E., Su, H. J. & Castro, C. E. DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano 8, 27–34 (2014).

    Article  CAS  Google Scholar 

  • Shi, Z., Castro, C. E. & Arya, G. Conformational dynamics of mechanically compliant DNA nanostructures from coarse-grained molecular dynamics simulations. ACS Nano 11, 4617–4630 (2017).

    Article  CAS  Google Scholar 

  • Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  Google Scholar 

  • Valero, J. & Famulok, M. Regeneration of burnt bridges on a DNA catenane walker. Angew. Chem. Int. Ed. Engl. 59, 16366–16370 (2020).

    Article  CAS  Google Scholar 

  • Yu, Z. et al. A self-regulating DNA rotaxane linear actuator driven by chemical energy. J. Am. Chem. Soc. 143, 13292–13298 (2021).

    Article  CAS  Google Scholar 

  • Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  Google Scholar 

  • Pereira, M. J. et al. Single VS ribozyme molecules reveal dynamic and hierarchical folding toward catalysis. J. Mol. Biol. 382, 496–509 (2008).

    Article  CAS  Google Scholar 

  • Sabanayagam, C. R., Eid, J. S. & Meller, A. Using fluorescence resonance energy transfer to measure distances along individual DNA molecules: corrections due to nonideal transfer. J. Chem. Phys. 122, 061103 (2005).

    Article  Google Scholar 

  • Guajardo, R., Lopez, P., Dreyfus, M. & Sousa, R. NTP concentration effects on initial transcription by T7 RNAP indicate that translocation occurs through passive sliding and reveal that divergent promoters have distinct NTP concentration requirements for productive initiation. J. Mol. Biol. 281, 777–792 (1998).

    Article  CAS  Google Scholar 

  • Koh, H. R. et al. Correlating transcription initiation and conformational changes by a single-subunit RNA Polymerase with near base-pair resolution. Mol. Cell 70, 695–706 e695 (2018).

    Article  CAS  Google Scholar 

  • Tang, G. Q., Roy, R., Bandwar, R. P., Ha, T. & Patel, S. S. Real-time observation of the transition from transcription initiation to elongation of the RNA polymerase. Proc. Natl Acad. Sci. USA 106, 22175–22180 (2009).

    Article  CAS  Google Scholar 

  • Kim, J. H. & Larson, R. G. Single-molecule analysis of 1D diffusion and transcription elongation of T7 RNA polymerase along individual stretched DNA molecules. Nucleic Acids Res. 35, 3848–3858 (2007).

    Article  CAS  Google Scholar 

  • Martin, C. T., Muller, D. K. & Coleman, J. E. Processivity in early stages of transcription by T7 RNA polymerase. Biochemistry 27, 3966–3974 (1988).

    Article  CAS  Google Scholar 

  • Lee, S., Nguyen, H. M. & Kang, C. Tiny abortive initiation transcripts exert antitermination activity on an RNA hairpin-dependent intrinsic terminator. Nucleic Acids Res. 38, 6045–6053 (2010).

    Article  CAS  Google Scholar 

  • Henderson, K. L. et al. RNA polymerase: step-by-step kinetics and mechanism of transcription initiation. Biochemistry 58, 2339–2352 (2019).

    Article  CAS  Google Scholar 

  • Revyakin, A., Liu, C., Ebright, R. H. & Strick, T. R. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science 314, 1139–1143 (2006).

    Article  CAS  Google Scholar 

  • Shen, H. & Kang, C. Two site contact of elongating transcripts to phage T7 RNA polymerase at C-terminal regions. J. Biol. Chem. 276, 4080–4084 (2001).

    Article  CAS  Google Scholar 

  • Ouldridge, T. E., Louis, A. A. & Doye, J. P. K. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J. Chem. Phys. 134, 085101 (2011).

    Article  Google Scholar 

  • Rovigatti, L., Sulc, P., Reguly, I. Z. & Romano, F. A comparison between parallelization approaches in molecular dynamics simulations on GPUs. J. Comput. Chem. 36, 1–8 (2015).

    Article  CAS  Google Scholar 

  • Snodin, B. E. et al. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J. Chem. Phys. 142, 234901 (2015).

    Article  Google Scholar 

  • Sulc, P. et al. Sequence-dependent thermodynamics of a coarse-grained DNA model. J. Chem. Phys. https://doi.org/10.1063/1.4754132 (2012).

  • Thomen, P. et al. T7 RNA polymerase studied by force measurements varying cofactor concentration. Biophys. J. 95, 2423–2433 (2008).

    Article  CAS  Google Scholar 

  • Durniak, K. J., Bailey, S. & Steitz, T. A. The structure of a transcribing T7 RNA polymerase in transition from initiation to elongation. Science 322, 553 (2008).

    Article  CAS  Google Scholar 

  • Ramezani, H. & Dietz, H. Building machines with DNA molecules. Nat. Rev. Genet. 21, 5–26 (2020).

    Article  CAS  Google Scholar 

  • Yoon, J., Eyster, T. W., Misra, A. C. & Lahann, J. Cardiomyocyte-driven actuation in biohybrid microcylinders. Adv. Mater. 27, 4509–4515 (2015).

    Article  CAS  Google Scholar 

  • Sagara, Y. et al. Rotaxanes as mechanochromic fluorescent force transducers in polymers. J. Am. Chem. Soc. 140, 1584–1587 (2018).

    Article  CAS  Google Scholar 

  • Chen, S. et al. An artificial molecular shuttle operates in lipid bilayers for ion transport. J. Am. Chem. Soc. 140, 17992–17998 (2018).

    Article  CAS  Google Scholar 

  • DeLuca, M., Shi, Z., Castro, C. E. & Arya, G. Dynamic DNA nanotechnology: toward functional nanoscale devices. Nanoscale Horiz. 5, 182–201 (2020).

    Article  CAS  Google Scholar 

  • Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    Article  CAS  Google Scholar 

  • Skugor, M. et al. Orthogonally photocontrolled non-autonomous DNA walker. Angew. Chem. Int. Ed. Engl. 58, 6948–6951 (2019).

    Article  CAS  Google Scholar 

  • Wang, S. et al. Light-induced reversible reconfiguration of DNA-based constitutional dynamic networks: application to switchable catalysis. Angew. Chem. Int. Ed. Engl. 57, 8105–8109 (2018).

    Article  CAS  Google Scholar 

  • Asanuma, H., Ito, T., Yoshida, T., Liang, X. & Komiyama, M. Photoregulation of the formation and dissociation of a DNA duplex by using the cistrans isomerization of azobenzene. Angew. Chem. Int. Ed. Engl. 38, 2393–2395 (1999).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1521-3773(19990816)38:163.0.CO;2-7″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291521-3773%2819990816%2938%3A16%3C2393%3A%3AAID-ANIE2393%3E3.0.CO%3B2-7″ aria-label=”Article reference 54″ data-doi=”10.1002/(SICI)1521-3773(19990816)38:163.0.CO;2-7″>Article  CAS  Google Scholar 

  • Liu, M., Asanuma, H. & Komiyama, M. Azobenzene-tethered T7 promoter for efficient photoregulation of transcription. J. Am. Chem. Soc. 128, 1009–1015 (2006).

    Article  CAS  Google Scholar 

  • Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  Google Scholar 

  • Chandradoss, S. D. et al. Surface passivation for single-molecule protein studies. J. Vis. Exp. https://doi.org/10.3791/50549 (2014).

    Article  Google Scholar 

  • Ouldridge, T. E., Sulc, P., Romano, F., Doye, J. P. K. & Louis, A. A. DNA hybridization kinetics: zippering, internal displacement and sequence dependence. Nucleic Acids Res. 41, 8886–8895 (2013).

    Article  CAS  Google Scholar 

  • Snodin, B. E. K. et al. Direct simulation of the self-assembly of a small DNA origami. Acs Nano 10, 1724–1737 (2016).

    Article  CAS  Google Scholar 

  • Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article  CAS  Google Scholar 

  • Suma, A. et al. TacoxDNA: a user-friendly web server for simulations of complex DNA structures, from single strands to origami. J. Comput. Chem. 40, 2586–2595 (2019).

    Article  CAS  Google Scholar 

  • Bohlin, J. et al. Design and simulation of DNA, RNA and hybrid protein–nucleic acid nanostructures with oxView. Nat. Protoc. 17, 1762–1788 (2022).

    Article  CAS  Google Scholar 

  • Poppleton, E. et al. Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation. Nucl. Acids Res. https://doi.org/10.1093/nar/gkaa417 (2020)

  • Doye, J. P. K. et al. The oxDNA coarse-grained model as a tool to simulate DNA origami. Methods Mol. Biol. 2639, 93–112 (2023).

    Article  Google Scholar 

  • Skinner, G. M., Kalafut, B. S. & Visscher, K. Downstream DNA tension regulates the stability of the T7 RNA polymerase initiation complex. Biophys. J. 100, 1034–1041 (2011).

    Article  CAS  Google Scholar 

  • Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).

    Article  CAS  Google Scholar 

  • Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  Google Scholar 

  • Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  Google Scholar 

  • Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  • Vester, B. & Wengel, J. LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43, 13233–13241 (2004).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img