Zephyrnet Logo

Electrically tunable giant Nernst effect in two-dimensional van der Waals heterostructures – Nature Nanotechnology

Date:

  • Onsager, L. Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931).

    Article 
    CAS 

    Google Scholar
     

  • Bridgman, P. W. The connections between the four transverse galvanomagnetic and thermomagnetic phenomena. Phys. Rev. 24, 644–651 (1924).

    Article 

    Google Scholar
     

  • Li, P. et al. Colossal Nernst power factor in topological semimetal NbSb2. Nat. Commun. 13, 7612 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping. Nat. Commun. 12, 3837 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, Y. et al. Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2. Nat. Commun. 13, 3909 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, G. Tunable topological Nernst effect in two-dimensional transition-metal dichalcogenides. Phys. Rev. B 98, 075416 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Waissman, J. et al. Electronic thermal transport measurement in low-dimensional materials with graphene non-local noise thermometry. Nat. Nanotechnol. 17, 166–173 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, W. et al. Seebeck-driven transverse thermoelectric generation. Nat. Mater. 20, 463–467 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asaba, T. et al. Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet. Sci. Adv. 7, eabf1467 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bel, R. et al. Giant Nernst effect in CeCoIn5. Phys. Rev. Lett. 92, 217002 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Z., Yang, H., Fauqué, B., Kopelevich, Y. & Behnia, K. Nernst effect and dimensionality in the quantum limit. Nat. Phys. 6, 26–29 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Z. A., Ong, N. P., Wang, Y., Kakeshita, T. & Uchida, S. Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2–xSrxCuO4. Nature 406, 486–488 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Behnia, K., Balicas, L. & Kopelevich, Y. Signatures of electron fractionalization in ultraquantum bismuth. Science 317, 1729–1731 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, J., Shen, W., Su, S. & Chen, J. Quantum thermal management devices based on strong coupling qubits. Phys. Rev. E 99, 062123 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, W. et al. Thermal management of a 3D packaging structure for superconducting quantum annealing machines. Appl. Phys. Lett. 118, 174004 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Elouard, C., Thomas, G., Maillet, O., Pekola, J. P. & Jordan, A. N. Quantifying the quantum heat contribution from a driven superconducting circuit. Phys. Rev. E 102, 030102 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Behnia, K. & Aubin, H. Nernst effect in metals and superconductors: a review of concepts and experiments. Rep. Prog. Phys. 79, 046502 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, H. et al. Photo-Nernst current in graphene. Nat. Phys. 12, 236–239 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kinoshita, K. et al. Photo-Nernst detection of cyclotron resonance in partially irradiated graphene. Appl. Phys. Lett. 115, 153102 (2019).

    Article 

    Google Scholar
     

  • Jiang, J., Xu, L., Qiu, C. & Peng, L.-M. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, T., Li, Z. & Louie, S. G. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe. Phys. Rev. Lett. 114, 236602 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Zultak, J. et al. Ultra-thin van der Waals crystals as semiconductor quantum wells. Nat. Commun. 11, 125 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, J. et al. Experimental identification of critical condition for drastically enhancing thermoelectric power factor of two-dimensional layered materials. Nano Lett. 18, 7538–7545 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hung, N. T., Nugraha, A. R. T. & Saito, R. Two-dimensional InSe as a potential thermoelectric material. Appl. Phys. Lett. 111, 092107 (2017).

    Article 

    Google Scholar
     

  • Nissimagoudar, A. S., Ma, J., Chen, Y. & Li, W. Thermal transport in monolayer InSe. J. Phys. Condens. Matter 29, 335702 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Shcherbakov, D. et al. Layer- and gate-tunable spin-orbit coupling in a high-mobility few-layer semiconductor. Sci. Adv. 7, eabe2892 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasquale, G. et al. Flat-band-induced many-body interactions and exciton complexes in a layered semiconductor. Nano Lett. 22, 8883–8891 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasquale, G. et al. Electrical detection of the flat-band dispersion in van der Waals field-effect structures. Nat. Nanotechnol. 18, 1416–1422 (2023).

  • Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    Article 

    Google Scholar
     

  • Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dankert, A. & Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, J. C. W. & Levitov, L. S. Shockley-Ramo theorem and long-range photocurrent response in gapless materials. Phys. Rev. B 90, 075415 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).

    Article 

    Google Scholar
     

  • Migliato Marega, G. et al. A large-scale integrated vector–matrix multiplication processor based on monolayer molybdenum disulfide memories. Nat. Electron. 6, 991–998 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mott, N. F. The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. A 62, 416 (1949).

    Article 

    Google Scholar
     

  • Chen, V. et al. Ambipolar thickness-dependent thermoelectric measurements of WSe2. Nano Lett. 23, 4095–4100 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buscema, M. et al. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 13, 358–363 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, P., Bao, W., Pu, Y., Lau, C. N. & Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Yim, W. M. & Amith, A. BiSb alloys for magneto-thermoelectric and thermomagnetic cooling. Solid-State Electron. 15, 1141–1165 (1972).

    Article 
    CAS 

    Google Scholar
     

  • Rai, A., Sangwan, V. K., Gish, J. T., Hersam, M. C. & Cahill, D. G. Anisotropic thermal conductivity of layered indium selenide. Appl. Phys. Lett. 118, 073101 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wickramaratne, D., Zahid, F. & Lake, R. K. Electronic and thermoelectric properties of van der Waals materials with ring-shaped valence bands. J. Appl. Phys. 118, 075101 (2015).

    Article 

    Google Scholar
     

  • Song, S. et al. Wafer-scale growth of two-dimensional, phase-pure InSe. Matter 6, 3483–3498 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Peres, N. M. R. Colloquium: the transport properties of graphene: an introduction. Rev. Mod. Phys. 82, 2673–2700 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Tan, J. et al. Thermoelectric properties of bismuth telluride thin films deposited by radio frequency magnetron sputtering. In Smart Sensors, Actuators, and MEMS II Vol. 5836, 711–718 (SPIE, 2005).

  • Collaudin, B. & Rando, N. Cryogenics in space: a review of the missions and of the technologies. Cryogenics 40, 797–819 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Hornibrook, J. M. et al. Cryogenic control architecture for large-scale quantum computing. Phys. Rev. Appl. 3, 024010 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gröblacher, S. et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat. Phys. 5, 485–488 (2009).

    Article 

    Google Scholar
     

  • Ho, P.-H. et al. High-mobility InSe transistors: the role of surface oxides. ACS Nano 11, 7362–7370 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, S. et al. Reconfigurable InSe electronics with van der Waals integration. Adv. Electron. Mater. 8, 2101176 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, J. et al. Stable InSe transistors with high-field effect mobility for reliable nerve signal sensing. npj 2D Mater. Appl. 3, 29 (2019).

    Article 

    Google Scholar
     

  • Yang, Z. et al. Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse. ACS Nano 11, 4225–4236 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergeron, H. et al. Large-area optoelectronic-grade InSe thin films via controlled phase evolution. Appl. Phys. Rev. 7, 041402 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hu, Y. et al. Temperature-dependent growth of few layer β-InSe and α-In2Se3 single crystals for optoelectronic device. Semicond. Sci. Technol. 33, 125002 (2018).

    Article 

    Google Scholar
     

  • Chang, H.-C. et al. Synthesis of large-area InSe monolayers by chemical vapor deposition. Small 14, 1802351 (2018).

    Article 

    Google Scholar
     

  • Arora, H. et al. Effective hexagonal boron nitride passivation of few-layered InSe and GaSe to enhance their electronic and optical properties. ACS Appl. Mater. Interfaces 11, 43480–43487 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Schottky-barrier thin-film transistors based on HfO2-capped InSe. Appl. Phys. Lett. 115, 033502 (2019).

    Article 

    Google Scholar
     

  • Checkelsky, J. G. & Ong, N. P. Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B 80, 081413 (2009).

    Article 

    Google Scholar
     

  • Yang, H. et al. Phase diagram of bismuth in the extreme quantum limit. Nat. Commun. 1, 47 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Tu, S. et al. Record thermopower found in an IrMn-based spintronic stack. Nat. Commun. 11, 2023 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. Anomalous enhancement of the Nernst effect at the crossover between a Fermi liquid and a strange metal. Nat. Phys. 19, 379–385 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ochs, A. M. et al. Synergizing a large ordinary Nernst effect and axis-dependent conduction polarity in flat band KMgBi crystals. Adv. Mater. 36, 2308151 (2024).

    Article 
    CAS 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img