Zephyrnet Logo

Turning a hot spot into a cold spot: Fano-shaped local-field responses probed by a quantum dot

Date:

Home > Press > Turning a hot spot into a cold spot: Fano-shaped local-field responses probed by a quantum dot

(a) Schematics of the QD-loaded nanoantenna excited by a polarization-controlled light beam. (b) Simulated spectral dispersions and spatial distributions of the local-field responses under x-polarized and y-polarized excitation. (c,d) Simulated spectral dispersions of local-field responses under elliptically polarized excitation. The spectra exhibit Fano lineshapes with tunable Fano asymmetry parameter q and nearly vanishing Fano dips. Local-field distributions show that at the Fano dips the hot spot at the nanogap can be turned into a cold spot. CREDIT
by Juan Xia, Jianwei Tang, Fanglin Bao, Yongcheng Sun, Maodong Fang, Guanjun Cao, Julian Evans, and Sailing He
(a) Schematics of the QD-loaded nanoantenna excited by a polarization-controlled light beam. (b) Simulated spectral dispersions and spatial distributions of the local-field responses under x-polarized and y-polarized excitation. (c,d) Simulated spectral dispersions of local-field responses under elliptically polarized excitation. The spectra exhibit Fano lineshapes with tunable Fano asymmetry parameter q and nearly vanishing Fano dips. Local-field distributions show that at the Fano dips the hot spot at the nanogap can be turned into a cold spot. CREDIT
by Juan Xia, Jianwei Tang, Fanglin Bao, Yongcheng Sun, Maodong Fang, Guanjun Cao, Julian Evans, and Sailing He

Abstract:
Optical nanoantennas can convert propagating light to local fields. The local-field responses can be engineered to exhibit nontrivial features in spatial, spectral and temporal domains. Local-field interferences play a key role in the engineering of the local-field responses. By controlling the local-field interferences, researchers have demonstrated local-field responses with various spatial distributions, spectral dispersions and temporal dynamics. Different degrees of freedom of the excitation light have been used to control the local-field interferences, such as the polarization, the beam shape and beam position, and the incidence direction. Despite the remarkable progress, achieving fully controllable local-field interferences remains a major challenge. A fully controllable local-field interference should be controllable between a constructive interference and a complete destructive interference. This would bring unprecedented benefit for the engineering of the local-field responses.

Turning a hot spot into a cold spot: Fano-shaped local-field responses probed by a quantum dot


Changchun, China | Posted on October 9th, 2020

In a new paper published in Light Science & Application, a team of scientists from China, led by Professor Sailing He from Zhejiang University and Professor Jianwei Tang from Huazhong University of Science and Technology, have experimentally demonstrated that based on a fully controllable local-field interference designed in the nanogap of a nanoantenna, a local-field hot spot can be turned into a cold spot, and the spectral dispersion of the local-field response can exhibit dynamically tunable Fano lineshapes with nearly vanishing Fano dips. By simply controlling the excitation polarization, the Fano asymmetry parameter q can be tuned from negative to positive values, and correspondingly, the Fano dip can be tuned across a broad wavelength range. At the Fano dips, the local-field intensity is strongly suppressed by up to ~50-fold.

The nanoantenna is an asymmetric dimer of colloidal gold nanorods, with a nanogap between the nanorods. The local-field response in the nanogap has the following features: First, local field can be excited by both orthogonal polarizations; Second, the local-field polarization has a negligible dependence on the excitation polarization; Third, the local-field response is resonant for one excitation polarization, but nonresonant for the orthogonal excitation polarization. The first two features make the local-field interferences fully controllable. The third feature further enables Fano-shaped local-field responses.

For experimental study of the local-field responses, it is crucial to probe the local fields at specified spatial and spectral positions. The scientists use a single quantum dot as a tiny sensors to probe the local-field spectrum in the nanogap of the nanoantenna. When the quantum dot is placed in the local field, it is excited by the local field, and its photoluminescence intensity can reveal the local-field response through comparison with its photoluminescence intensity excited directly by the incident light.

Superb fabrication technique is needed to fabricate such a tiny nanoantenna and put the tiny quantum dot sensor into the nanogap. The scientists use the sharp tip of an atomic force microscope (AFM) to do this job, pushing nanoparticles together on a glass substrate.

The scientists summarized the relevance of their work:

“Turning a local-field hot spot into a cold spot significantly expands the dynamic range for local-field engineering. The demonstrated low-background and dynamically tuneable Fano-shaped local-field responses can contribute as design elements to the toolbox for spatial, spectral and temporal local-field engineering.”

“More importantly, the low background and high tunability of the Fano lineshapes indicate that local-field interferences can be made fully controllable. Since the local-field interferences play a key role in the spatial, spectral and temporal engineering of the local-field responses, this encouraging conclusion may further inspire diverse designs of local-field responses with novel spatial distributions, spectral dispersions and temporal dynamics, which may find application in nanoscopy, spectroscopy, nano-optical quantum control and nanolithography.”

####

For more information, please click here

Contacts:
Jianwei Tang

Copyright © Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Surface waves can help nanostructured devices keep their cool October 12th, 2020

Development of cost-efficient electrocatalyst for hydrogen production: Development of a highly efficient and durable electrocatalyst for water electrolysis that will lead to cost-efficient hydrogen production. Trace amounts of titanium doping on low-cost molybdenum phosphide resu October 9th, 2020

Polarimetric parity-time-symmetric photonic system October 9th, 2020

New drug carrier systems: University of Delaware researchers advance drug delivery systems to treat connective tissue disorders October 9th, 2020

Wireless/telecommunications/RF/Antennas/Microwaves

Graphene detector reveals THz light’s polarization October 8th, 2020

28HV Solution Accelerates GLOBALFOUNDRIES Leadership in OLED Display Drivers for Mobile Devices: With more than 75 million units shipped to leading smartphone suppliers, GF’s 28HV solution is optimized to enable faster, brighter, sharper, and more power-efficient OLED displays October 1st, 2020

GLOBALFOUNDRIES Announces New 22FDX+ Platform, Extending FDX Leadership with Specialty Solutions for IoT and 5G Mobility: 22FDX+ platform builds upon the success of GF’s industry-leading 22FDX platform, with more than 350 million chips shipped October 1st, 2020

Brazilian researchers develop an optical fiber made of gel derived from marine algae: Edible, biocompatible and biodegradable, these fibers have potential for various medical applications. The results are described in the journal Scientific Reports. July 24th, 2020

Discoveries

Surface waves can help nanostructured devices keep their cool October 12th, 2020

Development of cost-efficient electrocatalyst for hydrogen production: Development of a highly efficient and durable electrocatalyst for water electrolysis that will lead to cost-efficient hydrogen production. Trace amounts of titanium doping on low-cost molybdenum phosphide resu October 9th, 2020

Polarimetric parity-time-symmetric photonic system October 9th, 2020

New drug carrier systems: University of Delaware researchers advance drug delivery systems to treat connective tissue disorders October 9th, 2020

Announcements

Surface waves can help nanostructured devices keep their cool October 12th, 2020

Development of cost-efficient electrocatalyst for hydrogen production: Development of a highly efficient and durable electrocatalyst for water electrolysis that will lead to cost-efficient hydrogen production. Trace amounts of titanium doping on low-cost molybdenum phosphide resu October 9th, 2020

Polarimetric parity-time-symmetric photonic system October 9th, 2020

New drug carrier systems: University of Delaware researchers advance drug delivery systems to treat connective tissue disorders October 9th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Surface waves can help nanostructured devices keep their cool October 12th, 2020

New NIST project to build nano-thermometers could revolutionize temperature imaging: Cheaper refrigerators? Stronger hip implants? A better understanding of human disease? All of these could be possible October 9th, 2020

Polarimetric parity-time-symmetric photonic system October 9th, 2020

New drug carrier systems: University of Delaware researchers advance drug delivery systems to treat connective tissue disorders October 9th, 2020

Quantum Dots/Rods

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

UTEP researchers help bring biofriendly materials to drug design for neuro disorders June 5th, 2020

Oxford Instruments Asylum Research Releases a New Application Note Introducing Scanning Capacitance Microscopy (SCM) June 3rd, 2020

FSU researchers discover new structure for promising class of materials April 24th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56379

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?