Zephyrnet Logo

The potential impact of nanomedicine on COVID-19-induced thrombosis

Date:

  • Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).

    Article  CAS  Google Scholar 

  • Wichmann, D. et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann. Intern. Med. 173, 268–277 (2020).

    Article  Google Scholar 

  • Klok, F. A. et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res. 191, 148–150 (2020).

    Article  CAS  Google Scholar 

  • Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 28, 583–590 (2022).

    Article  CAS  Google Scholar 

  • Virani, S. S. et al. Heart disease and stroke statistics—2021 update. Circulation 143, e254–e743 (2021).

    Article  Google Scholar 

  • Wilcox, T., Smilowitz, N. & Berger, J. Age and sex differences in incident thrombosis in patients hospitalized with COVID-19. J. Am. Coll. Cardiol. 77, 1826 (2021).

    Article  CAS  Google Scholar 

  • Chen, A.-T., Wang, C.-Y., Zhu, W.-L. & Chen, W. Coagulation disorders and thrombosis in COVID-19 patients and a possible mechanism involving endothelial cells: a review. Aging Dis. 13, 144–156 (2022).

    Article  Google Scholar 

  • Behzadifard, M. & Soleimani, M. NETosis and SARS-COV-2 infection related thrombosis: a narrative review. Thromb. J. 20, 13 (2022).

    Article  CAS  Google Scholar 

  • Campello, E. et al. Thrombin generation in patients with COVID-19 with and without thromboprophylaxis. Clin. Chem. Lab. Med. 59, 1323–1330 (2021).

    Article  CAS  Google Scholar 

  • Skendros, P. et al. Complement and tissue factor–enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Investig. 130, 6151–6157 (2020).

    Article  CAS  Google Scholar 

  • Goshua, G. et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 7, e575–e582 (2020).

    Article  Google Scholar 

  • Thachil, J. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 18, 1023–1026 (2020).

    Article  CAS  Google Scholar 

  • Sholzberg, M. et al. Effectiveness of therapeutic heparin versus prophylactic heparin on death, mechanical ventilation, or intensive care unit admission in moderately ill patients with COVID-19 admitted to hospital: RAPID randomised clinical trial. Brit. Med. J. 375, n2400 (2021).

    Article  Google Scholar 

  • The REMAP-CAP, ACTIV-4a & ATTACC Investigators Therapeutic anticoagulation with heparin in critically ill patients with COVID-19. N. Engl. J. Med. 385, 777–789 (2021)..

  • Kalogeris, T., Baines, C. P., Krenz, M. & Korthuis, R. J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 298, 229–317 (2012).

    Article  CAS  Google Scholar 

  • Blanc, R. et al. Recent advances in devices for mechanical thrombectomy. Expert Rev. Med. Devices 17, 697–706 (2020).

    Article  CAS  Google Scholar 

  • Whyte, C. S., Morrow, G. B., Mitchell, J. L., Chowdary, P. & Mutch, N. J. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. J. Thromb. Haemost. 18, 1548–1555 (2020).

    Article  CAS  Google Scholar 

  • Ucar, E. Y. Update on thrombolytic therapy in acute pulmonary thromboembolism. Eurasian J. Med. 51, 186–190 (2019).

    CAS  Google Scholar 

  • Warach, S. J., Dula, A. N. & Milling, T. J. Tenecteplase thrombolysis for acute ischemic stroke. Stroke 51, 3440–3451 (2020).

    Article  Google Scholar 

  • Wang, J. et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J. Thromb. Haemost. 18, 1752–1755 (2020).

    Article  CAS  Google Scholar 

  • Kosanovic, D. et al. Recombinant tissue plasminogen activator treatment for COVID-19 associated ARDS and acute cor pulmonale. Int. J. Infect. Dis. 104, 108–110 (2021).

    Article  CAS  Google Scholar 

  • Barrett, C. D. et al. Study of alteplase for respiratory failure in SARS-CoV-2 COVID-19: a vanguard multicenter, rapidly adaptive, pragmatic, randomized controlled trial. Chest 161, 710–727 (2022).

    Article  CAS  Google Scholar 

  • Rothschild, D. P., Goldstein, J. A. & Bowers, T. R. Low-dose systemic thrombolytic therapy for treatment of submassive pulmonary embolism: clinical efficacy but attendant hemorrhagic risks. Catheter. Cardiovasc. Interv. 93, 506–510 (2019).

    Google Scholar 

  • Huang, X. et al. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. 17, 1027–1037 (2022).

    Article  CAS  Google Scholar 

  • Colasuonno, M. et al. Erythrocyte-inspired discoidal polymeric nanoconstructs carrying tissue plasminogen activator for the enhanced lysis of blood clots. ACS Nano 12, 12224–12237 (2018).

    Article  CAS  Google Scholar 

  • Xu, J. et al. Sequentially site-specific delivery of thrombolytics and neuroprotectant for enhanced treatment of ischemic stroke. ACS Nano 13, 8577–8588 (2019).

    Article  CAS  Google Scholar 

  • Xu, J. et al. Engineered nanoplatelets for targeted delivery of plasminogen activators to reverse thrombus in multiple mouse thrombosis models. Adv. Mater. 32, 1905145 (2020).

    Article  CAS  Google Scholar 

  • Russell, L. M., Hultz, M. & Searson, P. C. Leakage kinetics of the liposomal chemotherapeutic agent doxil: the role of dissolution, protonation, and passive transport, and implications for mechanism of action. J. Control. Release 269, 171–176 (2018).

    Article  CAS  Google Scholar 

  • Kim, J.-Y., Kim, J.-K., Park, J.-S., Byun, Y. & Kim, C.-K. The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. Biomaterials 30, 5751–5756 (2009).

    Article  CAS  Google Scholar 

  • Zhang, W., Mehta, A., Tong, Z., Esser, L. & Voelcker, N. H. Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges. Adv. Sci. 8, 2003937 (2021).

    Article  CAS  Google Scholar 

  • Matoori, S. & Leroux, J.-C. Twenty-five years of polymersomes: lost in translation? Mater. Horiz. 7, 1297–1309 (2020).

    Article  CAS  Google Scholar 

  • Wang, X. et al. Near-infrared triggered release of uPA from nanospheres for localized hyperthermia-enhanced thrombolysis. Adv. Funct. Mater. 27, 1701824 (2017).

    Article  Google Scholar 

  • Wang, S. et al. Accelerating thrombolysis using a precision and clot-penetrating drug delivery strategy by nanoparticle-shelled microbubbles. Sci. Adv. 6, eaaz8204 (2020).

    Article  CAS  Google Scholar 

  • Voros, E. et al. TPA immobilization on iron oxide nanocubes and localized magnetic hyperthermia accelerate blood clot lysis. Adv. Funct. Mater. 25, 1709–1718 (2015).

    Article  CAS  Google Scholar 

  • Yang, G., Phua, S. Z. F., Bindra, A. K. & Zhao, Y. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv. Mater. 31, 1805730 (2019).

    Article  Google Scholar 

  • Chen, K. et al. Intrinsic biotaxi solution based on blood cell membrane cloaking enables fullerenol thrombolysis in vivo. ACS Appl. Mater. Interfaces 12, 14958–14970 (2020).

    Article  CAS  Google Scholar 

  • Wang, J., Chen, D. & Ho, E. A. Challenges in the development and establishment of exosome-based drug delivery systems. J. Control. Release 329, 894–906 (2021).

    Article  CAS  Google Scholar 

  • Kang, H., Seo, J., Yang, E.-J. & Choi, I.-H. Silver nanoparticles induce neutrophil extracellular traps via activation of PAD and neutrophil elastase. Biomolecules 11, 317 (2021).

    Article  CAS  Google Scholar 

  • Yang, Y. et al. Gold nanoparticles synergize with bacterial lipopolysaccharide to enhance class A scavenger receptor dependent particle uptake in neutrophils and augment neutrophil extracellular traps formation. Ecotoxicol. Environ. Saf. 211, 111900 (2021).

    Article  CAS  Google Scholar 

  • Bartneck, M., Keul, H. A., Zwadlo-Klarwasser, G. & Groll, J. Phagocytosis independent extracellular nanoparticle clearance by human immune cells. Nano Lett. 10, 59–63 (2010).

    Article  CAS  Google Scholar 

  • Snoderly, H. T. et al. PEGylation of metal oxide nanoparticles modulates neutrophil extracellular trap formation. Biosensors 12, 123 (2022).

    Article  CAS  Google Scholar 

  • Bilyy, R. et al. Inert coats of magnetic nanoparticles prevent formation of occlusive intravascular co-aggregates with neutrophil extracellular traps. Front. Immunol. 9, 2266 (2018).

    Article  Google Scholar 

  • Mukherjee, S. P. et al. Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. Nanoscale 10, 1180–1188 (2018).

    Article  CAS  Google Scholar 

  • Hwang, T.-L., Aljuffali, I. A., Hung, C.-F., Chen, C.-H. & Fang, J.-Y. The impact of cationic solid lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs). Chem. Biol. Interact. 235, 106–114 (2015).

    Article  CAS  Google Scholar 

  • Muñoz, L. E. et al. Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proc. Natl Acad. Sci. USA 113, E5856–E5865 (2016).

    Article  Google Scholar 

  • Yang, H. et al. Nanomaterial exposure induced neutrophil extracellular traps: a new target in inflammation and innate immunity. J. Immunol. Res. 2019, 3560180 (2019).

    Article  Google Scholar 

  • Kutscher, H. L. et al. Threshold size for optimal passive pulmonary targeting and retention of rigid microparticles in rats. J. Control. Release 143, 31–37 (2010).

    Article  CAS  Google Scholar 

  • Herda, L. M., Hristov, D. R., Lo Giudice, M. C., Polo, E. & Dawson, K. A. Mapping of molecular structure of the nanoscale surface in bionanoparticles. J. Am. Chem. Soc. 139, 111–114 (2017).

    Article  CAS  Google Scholar 

  • Faria, M. et al. Minimum information reporting in bio-nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Article  CAS  Google Scholar 

  • Lu, T.-Y. et al. Dual-targeting glycol chitosan/heparin-decorated polypyrrole nanoparticle for augmented photothermal thrombolytic therapy. ACS Appl. Mater. Interfaces 13, 10287–10300 (2021).

    Article  CAS  Google Scholar 

  • Bachelet, L. et al. Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets. Biochim. Biophys. Acta 1790, 141–146 (2009).

    Article  CAS  Google Scholar 

  • Juenet, M. et al. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials 156, 204–216 (2018).

    Article  CAS  Google Scholar 

  • Zhang, H. et al. Thrombus-targeted nanoparticles for thrombin-triggered thrombolysis and local inflammatory microenvironment regulation. J. Control. Release 339, 195–207 (2021).

    Article  CAS  Google Scholar 

  • Chang, L.-H. et al. Thrombus-specific theranostic nanocomposite for codelivery of thrombolytic drug, algae-derived anticoagulant and NIR fluorescent contrast agent. Acta Biomater. 134, 686–701 (2021).

    Article  CAS  Google Scholar 

  • Apostolopoulos, V. et al. A global review on short peptides: frontiers and perspectives. Molecules 26, 430 (2021).

    Article  CAS  Google Scholar 

  • Sun, M. et al. Combination targeting of ‘platelets + fibrin’ enhances clot anchorage efficiency of nanoparticles for vascular drug delivery. Nanoscale 12, 21255–21270 (2020).

    Article  CAS  Google Scholar 

  • Pawlowski, C. L. et al. Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis. Biomaterials 128, 94–108 (2017).

    Article  CAS  Google Scholar 

  • Yang, A. et al. Thrombin-responsive engineered nanoexcavator with full-thickness infiltration capability for pharmaceutical-free deep venous thrombosis theranostics. Biomater. Sci. 8, 4545–4558 (2020).

    Article  CAS  Google Scholar 

  • Marsh, J. N. et al. A fibrin-specific thrombolytic nanomedicine approach to acute ischemic stroke. Nanomedicine 6, 605–615 (2011).

    Article  CAS  Google Scholar 

  • Schwarz, M. et al. Conformation-specific blockade of the integrin GPIIb/IIIa. Circ. Res. 99, 25–33 (2006).

    Article  CAS  Google Scholar 

  • Bates, A. & Power, C. A. David vs. Goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies 8, 28 (2019).

    Article  CAS  Google Scholar 

  • Yong, K. W., Yuen, D., Chen, M. Z. & Johnston, A. P. R. Engineering the orientation, density, and flexibility of single-domain antibodies on nanoparticles to improve cell targeting. ACS Appl. Mater. Interfaces 12, 5593–5600 (2020).

    Article  CAS  Google Scholar 

  • Lu, R.-M. et al. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27, 1 (2020).

    Article  CAS  Google Scholar 

  • Zhao, Y. et al. Biomimetic fibrin-targeted and H2O2-responsive nanocarriers for thrombus therapy. Nano Today 35, 100986 (2020).

    Article  CAS  Google Scholar 

  • Cruz, M. A. et al. Nanomedicine platform for targeting activated neutrophils and neutrophil–platelet complexes using an α1-antitrypsin-derived peptide motif. Nat. Nanotechnol. 17, 1004–1014 (2022).

    Article  CAS  Google Scholar 

  • Korin, N. et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337, 738–742 (2012).

    Article  CAS  Google Scholar 

  • Marosfoi, M. G. et al. Shear-activated nanoparticle aggregates combined with temporary endovascular bypass to treat large vessel occlusion. Stroke 46, 3507–3513 (2015).

    Article  CAS  Google Scholar 

  • Wang, Y., Shim, M. S., Levinson, N. S., Sung, H.-W. & Xia, Y. Stimuli-responsive materials for controlled release of theranostic agents. Adv. Funct. Mater. 24, 4206–4220 (2014).

    Article  CAS  Google Scholar 

  • Snider, J. M. et al. Group IIA secreted phospholipase A2 is associated with the pathobiology leading to COVID-19 mortality. J. Clin. Invest. 131, e149236 (2021).

    Article  CAS  Google Scholar 

  • Takahashi, S. et al. Phospholipase A2 expression in coronary thrombus is increased in patients with recurrent cardiac events after acute myocardial infarction. Int. J. Cardiol. 168, 4214–4221 (2013).

    Article  Google Scholar 

  • Gallwitz, M., Enoksson, M., Thorpe, M. & Hellman, L. The extended cleavage specificity of human thrombin. PLoS ONE 7, e31756 (2012).

    Article  CAS  Google Scholar 

  • Freedman, J. E. Oxidative stress and platelets. Arterioscler. Thromb. Vasc. Biol. 28, s11–s16 (2008).

    Article  CAS  Google Scholar 

  • Laforge, M. et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat. Rev. Immunol. 20, 515–516 (2020).

    Article  CAS  Google Scholar 

  • Mei, T. et al. Encapsulation of tissue plasminogen activator in pH-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment—synergistic effect of thrombolysis and antioxidant. Biomaterials 215, 119209 (2019).

    Article  CAS  Google Scholar 

  • Genentech Inc. Efficacy of tocilizumab on patients with COVID-19. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/study/NCT04356937 (2020).

  • Simmons, J. Phase 2 trial using rhDNase to reduce mortality in COVID-19 patients with respiratory failure (DAMPENCOVID). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04445285 (2020).

  • Syed, Y. Y. Molnupiravir: first approval. Drugs 82, 455–460 (2022).

    Article  CAS  Google Scholar 

  • Lamb, Y. N. Nirmatrelvir plus ritonavir: first approval. Drugs 82, 585–591 (2022).

    Article  CAS  Google Scholar 

  • Peplow, M. Nanotechnology offers alternative ways to fight COVID-19 pandemic with antivirals. Nat. Biotechnol. 39, 1172–1174 (2021).

    Article  CAS  Google Scholar 

  • He, Q. et al. Antiviral properties of silver nanoparticles against SARS-CoV-2: effects of surface coating and particle size. Nanomaterials 12, 990 (2022).

    Article  CAS  Google Scholar 

  • Jeremiah, S. S., Miyakawa, K., Morita, T., Yamaoka, Y. & Ryo, A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem. Biophys. Res. Commun. 533, 195–200 (2020).

    Article  CAS  Google Scholar 

  • Stagi, L. et al. Effective SARS-CoV-2 antiviral activity of hyperbranched polylysine nanopolymers. Nanoscale 13, 16465–16476 (2021).

    Article  CAS  Google Scholar 

  • Zhao, Z. et al. Glycyrrhizic acid nanoparticles as antiviral and anti-inflammatory agents for COVID-19 treatment. ACS Appl. Mater. Interfaces 13, 20995–21006 (2021).

    Article  CAS  Google Scholar 

  • Tan, Q. et al. Macrophage biomimetic nanocarriers for anti-inflammation and targeted antiviral treatment in COVID-19. J. Nanobiotechnol. 19, 173 (2021).

    Article  CAS  Google Scholar 

  • Ma, X. et al. HACE2-exosome-based nano-bait for concurrent SARS-CoV-2 trapping and antioxidant therapy. ACS Appl. Mater. Interfaces 14, 4882–4891 (2022).

    Article  CAS  Google Scholar 

  • Wang, C. et al. Membrane nanoparticles derived from ACE2-rich cells block SARS-CoV-2 infection. ACS Nano 15, 6340–6351 (2021).

    Article  CAS  Google Scholar 

  • Li, Z. et al. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nat. Nanotechnol. 16, 942–951 (2021).

    Article  CAS  Google Scholar 

  • Peddapalli, A. et al. Demystifying excess immune response in COVID-19 to reposition an orphan drug for down-regulation of NF-κB: a systematic review. Viruses 13, 378 (2021).

    Article  CAS  Google Scholar 

  • Eedara, B. B. et al. Inhalation delivery for the treatment and prevention of COVID-19 infection. Pharmaceutics 13, 1077 (2021).

    Article  CAS  Google Scholar 

  • Miller, M. R. et al. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11, 4542–4552 (2017).

    Article  CAS  Google Scholar 

  • Lee, Y. Y. et al. Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2-mediated neutrophil activities and cytokine storm. Biomaterials 267, 120389 (2021).

    Article  CAS  Google Scholar 

  • Park, H. H. et al. Bioinspired DNase-I-coated melanin-like nanospheres for modulation of infection-associated NETosis dysregulation. Adv. Sci. 7, 2001940 (2020).

    Article  CAS  Google Scholar 

  • Alsabani, M. et al. Reduction of NETosis by targeting CXCR1/2 reduces thrombosis, lung injury, and mortality in experimental human and murine sepsis. Br. J. Anaesth. 128, 283–293 (2022).

    Article  CAS  Google Scholar 

  • Beristain-Covarrubias, N. et al. Understanding infection-induced thrombosis: lessons learned from animal models. Front. Immunol. 10, 2569 (2019).

    Article  CAS  Google Scholar 

  • Shou, S. et al. Animal models for COVID-19: hamsters, mouse, ferret, mink, tree shrew, and non-human primates. Front. Microbiol. 12, 626553 (2021).

    Article  Google Scholar 

  • Shi, J. et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 368, 1016–1020 (2020).

    Article  CAS  Google Scholar 

  • Cicha, I. et al. From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovasc. Res. 114, 1714–1727 (2018).

    Article  CAS  Google Scholar 

  • Bai, S. et al. Multimodal and multifunctional nanoparticles with platelet targeting ability and phase transition efficiency for the molecular imaging and thrombolysis of coronary microthrombi. Biomater. Sci. 8, 5047–5060 (2020).

    Article  CAS  Google Scholar 

  • Huang, Y. et al. An activated-platelet-sensitive nanocarrier enables targeted delivery of tissue plasminogen activator for effective thrombolytic therapy. J. Control. Release 300, 1–12 (2019).

    Article  CAS  Google Scholar 

  • Sánchez-Cortés, J. & Mrksich, M. The platelet integrin alphaIIbbeta3 binds to the RGD and AGD motifs in fibrinogen. Chem. Biol. 16, 990–1000 (2009).

    Article  Google Scholar 

  • Absar, S., Nahar, K., Kwon, Y. M. & Ahsan, F. Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy. Pharm. Res. 30, 1663–1676 (2013).

    Article  CAS  Google Scholar 

  • Zhong, Y. et al. Low-intensity focused ultrasound-responsive phase-transitional nanoparticles for thrombolysis without vascular damage: a synergistic nonpharmaceutical strategy. ACS Nano 13, 3387–3403 (2019).

    Article  CAS  Google Scholar 

  • Chen, H.-A., Ma, Y.-H., Hsu, T.-Y. & Chen, J.-P. Preparation of peptide and recombinant tissue plasminogen activator conjugated poly(lactic-co-glycolic acid) (PLGA) magnetic nanoparticles for dual targeted thrombolytic therapy. Int. J. Mol. Sci. 21, 2690 (2020).

    Article  CAS  Google Scholar 

  • Singh, M. P. et al. Reprogramming the rapid clearance of thrombolytics by nanoparticle encapsulation and anchoring to circulating red blood cells. J. Control. Release 329, 148–161 (2021).

    Article  CAS  Google Scholar 

  • Kawata, H. et al. A new drug delivery system for intravenous coronary thrombolysis with thrombus targeting and stealth activity recoverable by ultrasound. J. Am. Coll. Cardiol. 60, 2550–2557 (2012).

    Article  CAS  Google Scholar 

  • Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

    Article  CAS  Google Scholar 

  • Veras, F. P. et al. SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med. 217, e20201129 (2020).

    Article  CAS  Google Scholar 

  • Arcanjo, A. et al. The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19). Sci. Rep. 10, 19630 (2020).

    Article  CAS  Google Scholar 

  • Kaiser, R. et al. Self-sustaining IL-8 loops drive a prothrombotic neutrophil phenotype in severe COVID-19. JCI Insight 6, e150862 (2021).

    Article  Google Scholar 

  • Wu, M. et al. Transcriptional and proteomic insights into the host response in fatal COVID-19 cases. Proc. Natl Acad. Sci. USA 117, 28336–28343 (2020).

    Article  CAS  Google Scholar 

  • Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020).

    Article  CAS  Google Scholar 

  • Zuo, Y. et al. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight 6, e150111 (2021).

    Google Scholar 

  • Englert, H. et al. Defective NET clearance contributes to sustained FXII activation in COVID-19-associated pulmonary thrombo-inflammation. eBioMedicine 67, 103382 (2021).

    Article  CAS  Google Scholar 

  • Semeraro, F. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 118, 1952–1961 (2011).

    Article  CAS  Google Scholar 

  • Girard, P. et al. Deep venous thrombosis in patients with acute pulmonary embolism: prevalence, risk factors, and clinical significance. Chest 128, 1593–1600 (2005).

    Article  Google Scholar 

  • Helms, J. et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 46, 1089–1098 (2020).

    Article  CAS  Google Scholar 

  • Chernysh, I. N. et al. The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Sci. Rep. 10, 5112 (2020).

    Article  CAS  Google Scholar 

  • Guan, W.-j et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382, 1708–1720 (2020).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img