Zephyrnet Logo

Synthetic biology of extremophiles: a new wave of biomanufacturing

Date:

    • Clomburg J.M.
    • et al.

    Industrial biomanufacturing: the future of chemical production.

    Science. 2017; 355aag0804

    • Philp J.C.
    • et al.

    Biobased chemicals: the convergence of green chemistry with industrial biotechnology.

    Trends Biotechnol. 2013; 31: 219-222

    • Steen E.J.
    • et al.

    Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol.

    Microb. Cell Factories. 2008; 7: 36

    • Chen G.Q.
    • et al.

    Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates.

    Trends Biotechnol. 2015; 33: 565-574

    • Fang H.
    • et al.

    Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12.

    Nat. Commun. 2018; 9: 4917

    • Chen G.Q.
    • Jiang X.R.

    Next generation industrial biotechnology based on extremophilic bacteria.

    Curr. Opin. Biotechnol. 2018; 50: 94-100

    • Zhang X.
    • et al.

    Halophiles as chassis for bioproduction.

    Adv. Biosyst. 2018; 21800088

    • Coker J.A.

    Recent advances in understanding extremophiles.

    F1000Research. 2019; 8: 1917

    • Tan D.
    • et al.

    Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates.

    Metab. Eng. 2014; 26: 34-47

    • Tao W.
    • et al.

    Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi.

    Microb. Cell Factories. 2017; 16: 48

    • Ye J.
    • et al.

    Pilot scale-up of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by Halomonas bluephagenesis via cell growth adapted optimization process.

    Biotechnol. J. 2018; 13e1800074

    • Sarilmiser H.K.
    • et al.

    Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T.

    J. Biosci. Bioeng. 2015; 119: 455-463

    • Obruca S.
    • et al.

    Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics.

    Biotechnol. Adv. 2022; 58107906

  • Polyhydroxyalkanoate biosynthesis at the edge of water activity-Haloarchaea as biopolyester factories.

    Bioengineering (Basel). 2019; 6: 34

    • Krulwich T.A.
    • et al.

    Molecular aspects of bacterial pH sensing and homeostasis.

    Nat. Rev. Microbiol. 2011; 9: 330-343

    • Toivari M.
    • et al.

    Low pH D-xylonate production with Pichia kudriavzevii.

    Bioresour. Technol. 2013; 133: 555-562

    • Xiao H.
    • et al.

    Exploiting Issatchenkia orientalis SD108 for succinic acid production.

    Microb. Cell Factories. 2014; 13: 121

    • Park H.J.
    • et al.

    Low-pH production of d-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7.

    Biotechnol. Bioeng. 2018; 115: 2232-2242

    • Sousa J.A.
    • et al.

    Ecology and application of haloalkaliphilic anaerobic microbial communities.

    Appl. Microbiol. Biotechnol. 2015; 99: 9331-9336

    • Pikuta E.V.
    • et al.

    Microbial extremophiles at the limits of life.

    Crit. Rev. Microbiol. 2007; 33: 183-209

    • Zhu D.
    • et al.

    Recent development of extremophilic bacteria and their application in biorefinery.

    Front Bioeng. Biotechnol. 2020; 8: 483

    • Wernick D.G.
    • et al.

    Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis.

    Sci. Rep. 2016; 6: 20224

    • Bhandiwad A.
    • et al.

    Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production.

    Metab. Eng. 2014; 21: 17-25

    • Tian L.
    • et al.

    Metabolic engineering of Clostridium thermocellum for n-butanol production from cellulose.

    Biotechnol. Biofuels. 2019; 12: 186

    • Khongto B.
    • et al.

    Fermentation process development of recombinant Hansenula polymorpha for gamma-linolenic acid production.

    J. Microbiol. Biotechnol. 2010; 20: 1555-1562

    • Löbs A.K.
    • et al.

    CRISPR-Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus.

    Biotechnol. Biofuels. 2017; 10: 164

    • Atalah J.
    • et al.

    Thermophiles and the applications of their enzymes as new biocatalysts.

    Bioresour. Technol. 2019; 280: 478-488

    • Giovanella P.
    • et al.

    Metal and organic pollutants bioremediation by extremophile microorganisms.

    J. Hazard. Mater. 2020; 382121024

    • Gabani P.
    • Singh O.V.

    Radiation-resistant extremophiles and their potential in biotechnology and therapeutics.

    Appl. Microbiol. Biotechnol. 2013; 97: 993-1004

    • Shukla M.
    • et al.

    Multiple-stress tolerance of ionizing radiation-resistant bacterial isolates obtained from various habitats: correlation between stresses.

    Curr. Microbiol. 2007; 54: 142-148

    • Ye J.W.
    • Chen G.Q.

    Halomonas as a chassis.

    Essays Biochem. 2021; 65: 393-403

    • Lan L.H.
    • et al.

    Engineering Halomonas spp. as a low-cost production host for production of bio-surfactant protein PhaP.

    Biotechnol. J. 2016; 11: 1595-1604

    • Xu T.
    • et al.

    Deficiency of exopolysaccharides and O-antigen makes Halomonas bluephagenesis self-flocculating and amenable to electrotransformation.

    Commun. Biol. 2022; 5: 623

    • Baker T.A.
    • Wickner S.H.

    Genetics and enzymology of DNA replication in Escherichia coli.

    Annu. Rev. Genet. 1992; 26: 447-477

    • Chung D.
    • et al.

    Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus.

    PLoS One. 2013; 8e62881

    • Li T.
    • et al.

    Engineering of core promoter regions enables the construction of constitutive and inducible promoters in Halomonas sp.

    Biotechnol. J. 2016; 11: 219-227

    • Zhao H.
    • et al.

    Novel T7-like expression systems used for Halomonas.

    Metab. Eng. 2017; 39: 128-140

    • Shen R.
    • et al.

    Promoter engineering for enhanced P(3HB-co-4HB) production by Halomonas bluephagenesis.

    ACS Synth. Biol. 2018; 7: 1897-1906

    • Spath K.
    • et al.

    Direct cloning in Lactobacillus plantarum: electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete.

    Microb. Cell Factories. 2012; 11: 141

    • Martínez-García E.
    • et al.

    SEVA 3.0: an update of the Standard European Vector Architecture for enabling portability of genetic constructs among diverse bacterial hosts.

    Nucleic Acids Res. 2020; 48: 1164-1170

    • Lammens E.M.
    • et al.

    SEVAtile: a standardised DNA assembly method optimised for Pseudomonas.

    Microb. Biotechnol. 2022; 15: 370-386

    • Klapatch T.R.
    • et al.

    Restriction endonuclease activity in Clostridium thermocellum and Clostridium thermosaccharolyticum.

    Appl. Microbiol. Biotechnol. 1996; 45: 127-131

    • Clifton K.P.
    • et al.

    The genetic insulator RiboJ increases expression of insulated genes.

    J. Biol. Eng. 2018; 12: 23

    • Olson D.G.
    • et al.

    Identifying promoters for gene expression in Clostridium thermocellum.

    Metab. Eng. Commun. 2015; 2: 23-29

    • Luo Y.
    • et al.

    Systematic identification of a panel of strong constitutive promoters from Streptomyces albus.

    ACS Synth. Biol. 2015; 4: 1001-1010

    • Zhang Y.
    • et al.

    A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440.

    Int. J. Biol. Macromol. 2021; 191: 608-617

    • Sun W.
    • et al.

    Integration of metabolic pathway manipulation and promoter engineering for the fine-tuned biosynthesis of malic acid in Bacillus coagulans.

    Biotechnol. Bioeng. 2021; 118: 2597-2608

    • Lammens E.M.
    • et al.

    Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria.

    Nat. Commun. 2020; 11: 5294

    • Hueso-Gil A.
    • et al.

    Multiple-site diversification of regulatory sequences enables interspecies operability of genetic devices.

    ACS Synth. Biol. 2020; 9: 104-114

    • Meyers A.
    • et al.

    Cell density-dependent auto-inducible promoters for expression of recombinant proteins in Pseudomonas putida.

    Microb. Biotechnol. 2019; 12: 1003-1013

    • Wang X.
    • et al.

    Reversible thermal regulation for bifunctional dynamic control of gene expression in Escherichia coli.

    Nat. Commun. 2021; 12: 1411

    • Qin Q.
    • et al.

    CRISPR/Cas9 editing genome of extremophile Halomonas spp.

    Metab. Eng. 2018; 47: 219-229

    • Zhao C.
    • et al.

    Engineered Halomonas spp. for production of L-lysine and cadaverine.

    Bioresour. Technol. 2022; 349126865

    • Yin J.
    • et al.

    Development of an enhanced chromosomal expression system based on porin synthesis operon for halophile Halomonas sp.

    Appl. Microbiol. Biotechnol. 2014; 98: 8987-8997

    • Wang L.J.
    • et al.

    Engineering Halomonas bluephagenesis via small regulatory RNAs.

    Metab. Eng. 2022; 73: 58-69

    • Yin J.
    • et al.

    Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp.

    Appl. Microbiol. Biotechnol. 2015; 99: 5523-5534

    • Marx C.J.
    • Lidstrom M.E.

    Broad-host-range cre-lox system for antibiotic marker recycling in Gram-negative bacteria.

    Biotechniques. 2002; 33: 1062-1067

    • Weinstock M.T.
    • et al.

    Vibrio natriegens as a fast-growing host for molecular biology.

    Nat. Methods. 2016; 13: 849-851

    • Xu T.
    • et al.

    Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase.

    Appl. Environ. Microbiol. 2015; 81: 4423-4431

    • Walker J.E.
    • et al.

    Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum.

    Metab. Eng. Commun. 2020; 10e00116

    • Shi F.
    • et al.

    Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum.

    AMB Express. 2018; 8: 61

    • Stiller L.M.
    • et al.

    Engineering the salt-inducible ectoine promoter region of Halomonas elongata for protein expression in a unique stabilizing environment.

    Genes (Basel). 2018; 9: 184

    • Ye J.
    • et al.

    Stimulus response-based fine-tuning of polyhydroxyalkanoate pathway in Halomonas.

    Metab. Eng. 2020; 57: 85-95

    • Yu L.P.
    • et al.

    Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis.

    Metab. Eng. 2020; 59: 119-130

    • Ma H.
    • et al.

    Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine.

    Nat. Commun. 2020; 11: 3313

    • Chen Y.
    • et al.

    Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV).

    Metab. Eng. 2019; 54: 69-82

    • Du H.
    • et al.

    Engineering Halomonas bluephagenesis for L-threonine production.

    Metab. Eng. 2020; 60: 119-127

    • Gupta A.
    • et al.

    Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit.

    Nat. Biotechnol. 2017; 35: 273-279

    • Ma Y.
    • et al.

    Engineering an oleic acid-induced system for Halomonas, E. coli and Pseudomonas.

    Metab. Eng. 2022; 72: 325-336

    • Jiang X.R.
    • et al.

    Controlling cell volume for efficient PHB production by Halomonas.

    Metab. Eng. 2017; 44: 30-37

    • Wang Z.
    • et al.

    Engineering the permeability of Halomonas bluephagenesis enhanced its chassis properties.

    Metab. Eng. 2021; 67: 53-66

    • Ouyang P.
    • et al.

    Increasing oxygen availability for improving poly(3-hydroxybutyrate) production by Halomonas.

    Metab. Eng. 2018; 45: 20-31

    • Ling C.
    • et al.

    Engineering self-flocculating Halomonas campaniensis for wastewaterless open and continuous fermentation.

    Biotechnol. Bioeng. 2019; 116: 805-815

    • Ling C.
    • et al.

    Engineering NADH/NAD+ ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA).

    Metab. Eng. 2018; 49: 275-286

    • Liu X.
    • et al.

    Identification of genome integration sites for developing a CRISPR-based gene expression toolkit in Yarrowia lipolytica.

    Microb. Biotechnol. 2022; 15: 2223-2234

    • Liu X.
    • et al.

    Rapid quantification of polyhydroxyalkanoates accumulated in living cells based on green fluorescence protein-labeled phasins: the qPHA method.

    Biomacromolecules. 2022; 23: 4153-4166

    • Wang B.L.
    • et al.

    Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption.

    Nat. Biotechnol. 2014; 32: 473-478

    • Schulze S.
    • et al.

    The archaeal proteome project advances knowledge about archaeal cell biology through comprehensive proteomics.

    Nat. Commun. 2020; 11: 3145

    • Mori Y.
    • Shirai T.

    Designing artificial metabolic pathways, construction of target enzymes, and analysis of their function.

    Curr. Opin. Biotechnol. 2018; 54: 41-44

    • Zhao Q.
    • et al.

    High ectoine production by an engineered Halomonas hydrothermalis Y2 in a reduced salinity medium.

    Microb. Cell Factories. 2019; 18: 184

    • Liu M.
    • et al.

    Identification of the biosynthetic pathway of glycine betaine that is responsible for salinity tolerance in halophilic Thioalkalivibrio versutus D301.

    Front. Microbiol. 2022; 13875843

    • Ram S.
    • et al.

    Bacteria as an alternate biofactory for carotenoid production: a review of its applications, opportunities and challenges.

    J. Funct. Foods. 2020; 67103867

    • Zhang Y.
    • et al.

    Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol.

    Metab. Eng. 2021; 65: 52-65

    • Elleuche S.
    • et al.

    Extremozymes-biocatalysts with unique properties from extremophilic microorganisms.

    Curr. Opin. Biotechnol. 2014; 29: 116-123

    • Lee S.Y.
    • et al.

    A comprehensive metabolic map for production of bio-based chemicals.

    Nat. Catal. 2019; 2: 18-33

    • Keasling J.
    • et al.

    Microbial production of advanced biofuels.

    Nat. Rev. Microbiol. 2021; 19: 701-715

    • Meng W.
    • et al.

    Non-sterilized fermentation of 2,3-butanediol with seawater by metabolic engineered fast-growing Vibrio natriegens.

    Front Bioeng. Biotechnol. 2022; 10955097

    • Ibrahim M.H.
    • Steinbüchel A.

    High-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10.

    Appl. Environ. Microbiol. 2010; 76: 7890-7895

    • Peleg M.
    • et al.

    The Arrhenius equation revisited.

    Crit. Rev. Food Sci. Nutr. 2012; 52: 830-851

    • Blum P.
    • et al.

    Experimental microbial evolution of extremophiles.

    in: Rampelotto P.H. Biotechnology of Extremophiles. Springer, 2016: 619-636

    • Wang Y.
    • et al.

    Microbial engineering for easy downstream processing.

    Biotechnol. Adv. 2019; 37107365

    • Shen R.
    • et al.

    Manipulation of polyhydroxyalkanoate granular sizes in Halomonas bluephagenesis.

    Metab. Eng. 2019; 54: 117-126

    • Do D.T.H.
    • et al.

    Organic wastes as feedstocks for non-conventional yeast-based bioprocesses.

    Microorganisms. 2019; 7: 229

    • Mohanty S.S.
    • et al.

    A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production.

    Microb. Cell Factories. 2021; 20: 120

    • Lopes M.
    • et al.

    Microbial valorization of waste cooking oils for valuable compounds production – a review.

    Crit. Rev. Environ. Sci. Technol. 2019; 50: 2583-2616

    • Chavan S.
    • et al.

    A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks.

    Bioresour. Technol. 2021; 341125900

    • Li M.
    • et al.

    Tailor-made polyhydroxyalkanoates by reconstructing Pseudomonas entomophila.

    Adv. Mater. 2021; 33e2102766

    • Lin Y.
    • et al.

    Engineering Halomonas bluephagenesis as a chassis for bioproduction from starch.

    Metab. Eng. 2021; 64: 134-145

    • Van Dyk J.S.
    • Pletschke B.I.

    A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes – factors affecting enzymes, conversion and synergy.

    Biotechnol. Adv. 2012; 30: 1458-1480

    • Zhao Z.
    • et al.

    Biochemical routes for uptake and conversion of xylose by microorganisms.

    Biotechnol. Biofuels. 2020; 13: 21

    • Tiso T.
    • et al.

    Towards bio-upcycling of polyethylene terephthalate.

    Metab. Eng. 2021; 66: 167-178

    • Trotsenko Y.A.
    • Khmelenina V.N.

    Biology of extremophilic and extremotolerant methanotrophs.

    Arch. Microbiol. 2002; 177: 123-131

    • Gurdo N.
    • et al.

    Merging automation and fundamental discovery into the design–build–test–learn cycle of nontraditional microbes.

    Trends Biotechnol. 2022; 40: 1148-1159

    • Zhang X.
    • et al.

    Response surface methodology for the optimization of ultrasound-assisted extraction of tetrodotoxin from the liver of Takifugu pseudommus.

    Toxins (Basel). 2018; 10: 529

    • Costello Z.
    • Martin H.G.

    A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data.

    NPJ Syst. Biol. Appl. 2018; 4: 19

    • Scheper T.
    • et al.

    Digitalization and bioprocessing: promises and challenges.

    Adv. Biochem. Eng. Biotechnol. 2021; 176: 57-69

    • Darlington A.P.S.
    • Bates D.G.

    Architectures for combined transcriptional and translational resource allocation controllers.

    Cell Syst. 2020; 11: 382-392

    • Zhu J.
    • et al.

    Factors for promoting polyhydroxyalkanoate (PHA) synthesis in bio-nutrient-removal and recovery system.

    IOP Conf. Ser. Earth Environ. Sci. 2018; 178012021

    • Lo T.M.
    • et al.

    A two-layer gene circuit for decoupling cell growth from metabolite production.

    Cell Syst. 2016; 3: 133-143

    • Quillaguaman J.
    • et al.

    Poly(beta-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate.

    J. Appl. Microbiol. 2005; 99: 151-157

    • Yue H.
    • et al.

    A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates.

    Biotechnol. Biofuels. 2014; 7: 108

    • Tan D.
    • et al.

    Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01.

    Bioresour. Technol. 2011; 102: 8130-8136

    • Ye J.
    • et al.

    Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose.

    Metab. Eng. 2018; 47: 143-152

    • Wang Z.
    • et al.

    Hyperproduction of PHA copolymers containing high fractions of 4-hydroxybutyrate (4HB) by outer membrane-defected Halomonas bluephagenesis grown in bioreactors.

    Microb. Biotechnol. 2022; 15: 1586-1597

    • Jiang X.R.
    • et al.

    Hyperproduction of 3-hydroxypropionate by Halomonas bluephagenesis.

    Nat. Commun. 2021; 12: 1513

    • Fu X.Z.
    • et al.

    Development of Halomonas TD01 as a host for open production of chemicals.

    Metab. Eng. 2014; 23: 78-91

    • Erkorkmaz B.A.
    • et al.

    Development of a cost-effective production process for Halomonas levan.

    Bioprocess Biosyst. Eng. 2018; 41: 1247-1259

    • Hannya A.
    • et al.

    Efficient production and secretion of oxaloacetate from Halomonas sp. KM-1 under aerobic conditions.

    AMB Express. 2017; 7: 209

    • Kawata Y.
    • et al.

    Efficient production and secretion of pyruvate from Halomonas sp. KM-1 under aerobic conditions.

    AMB Express. 2016; 6: 22

    • Manfrão-Netto J.H.C.
    • et al.

    Advances in using Hansenula polymorpha as chassis for recombinant protein production.

    Front Bioeng. Biotechnol. 2019; 7: 94

    • Merino N.
    • et al.

    Living at the extremes: extremophiles and the limits of life in a planetary context.

    Front. Microbiol. 2019; 10: 780

    • Dhakar K.
    • Pandey A.

    Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology.

    Appl. Microbiol. Biotechnol. 2016; 100: 2499-2510

    • Tsuji A.
    • et al.

    Establishment of genetic tools for genomic DNA engineering of Halomonas sp. KM-1, a bacterium with potential for biochemical production.

    Microb. Cell Factories. 2022; 21: 122

  • spot_img

    Latest Intelligence

    spot_img