Zephyrnet Logo

Nutrient-delivery and metabolism reactivation therapy for melanoma – Nature Nanotechnology

Date:

  • Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science 368, 152–163 (2020).

    Article 

    Google Scholar
     

  • Martinez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heiden, M. G. V., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article 

    Google Scholar
     

  • Schiliro, C. & Firestein, B. L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 10, 1056–1097 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122, 4–22 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eniafe, J. & Jiang, S. The functional roles of TCA cycle metabolites in cancer. Oncogene 40, 3351–3363 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakhle, J., Rodriguez, A. M. & Vignais, M. L. Multifaceted roles of mitochondrial components and metabolites in metabolic diseases and cancer. Int. J. Mol. Sci. 21, 4405–4436 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdel-Wahab, A. F., Mahmoud, W. & Al-Harizy, R. M. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol. Res. 150, 104511 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Cosimo, S. et al. Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today 39, 157–174 (2003).

    Article 

    Google Scholar
     

  • Qi, H. et al. Shikonin induced apoptosis mediated by endoplasmic reticulum stress in colorectal cancer cells. J. Cancer 13, 243–252 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dowsett, M. et al. Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet 386, 1341–1352 (2015).

    Article 

    Google Scholar
     

  • Ma, C. X., Reinert, T., Chmielewska, I. & Ellis, M. J. Mechanisms of aromatase inhibitor resistance. Nat. Rev. Cancer 15, 261–275 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruijtenberg, S. & van den Heuvel, S. Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle 15, 196–212 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaude, E. & Frezza, C. Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nat. Commun. 7, 13041 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garrett, M. et al. Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities. Cancer Metab. 6, 4 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, H. et al. Metabolic alteration in hepatocellular carcinoma: mechanism of lipid accumulation in well-differentiated hepatocellular carcinoma. Can. J. Gastroenterol. Hepatol. 2021, 8813410 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, R. et al. Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma. Nat. Commun. 4, 2508 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Soballe, P. W. & Herlyn, M. Cellular pathways leading to melanoma differentiation—therapeutic implications. Melanoma Res. 4, 213–223 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, M. J., Dong, Y., Sun, C. X. & Zhang, X. H. Resveratrol inhibits proliferation, promotes differentiation and melanogenesis in HT-144 melanoma cells through inhibition of MEK/ERK kinase pathway. Microb. Pathog. 111, 410–413 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaabane, F., Pinon, A., Simon, A., Ghedira, K. & Chekir-Ghedira, L. Phytochemical potential of Daphne gnidium in inhibiting growth of melanoma cells and enhancing melanogenesis of B16-F0 melanoma. Cell Biochem. Funct. 31, 460–467 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sung, J. Y. & Cheong, J. H. New immunometabolic strategy based on cell type-specific metabolic reprogramming in the tumor immune microenvironment. Cells 11, 768 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elia, I., Schmieder, R., Christen, S. & Fendt, S. M. Organ-specific cancer metabolism and its potential for therapy. Handb. Exp. Pharmacol. 233, 321–353 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costello, L. C. & Franklin, R. B. Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate 35, 285–296 (1998).

    <a data-track="click||click_references" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-0045(19980601)35:43.0.CO;2-F” data-track-item_id=”10.1002/(SICI)1097-0045(19980601)35:43.0.CO;2-F” data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-0045%2819980601%2935%3A4%3C285%3A%3AAID-PROS8%3E3.0.CO%3B2-F” aria-label=”Article reference 23″ data-doi=”10.1002/(SICI)1097-0045(19980601)35:43.0.CO;2-F”>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franklin, R. B. & Costello, L. C. Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch. Biochem. Biophys. 463, 211–217 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goode, D. R., Totten, R. K., Heeres, J. T. & Hergenrothert, P. J. Identification of promiscuous small molecule activators in high-throughput enzyme activation screens. J. Med. Chem. 51, 2346–2349 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, K. P. & Scott, J. E. Enzyme assay design for high-throughput screening. Methods Mol. Biol. 565, 107–126 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Werle, M. & Bernkop-Schnurch, A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 30, 351–367 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casero, R. A., Stewart, T. M. & Pegg, A. E. Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat. Rev. Cancer 18, 681–695 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frezza, C. Histidine metabolism boosts cancer therapy. Nature 559, 484–485 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pal, P., Hales, K., Petrik, J. & Hales, D. B. Pro-apoptotic and anti-angiogenic actions of 2-methoxyestradiol and docosahexaenoic acid, the biologically derived active compounds from flaxseed diet, in preventing ovarian cancer. J. Ovarian Res. 12, 49–65 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tapsell, L. C., Neale, E. P., Satija, A. & Hu, F. B. Foods, nutrients, and dietary patterns: interconnections and implications for dietary guidelines. Adv. Nutr. 7, 445–454 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fanzo, J. et al. Nutrients, foods, diets, people: promoting healthy eating. Curr. Dev. Nutr. 4, nzaa069 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang, C. et al. Small molecule-drug conjugates: a novel strategy for cancer-targeted treatment. Eur. J. Med. Chem. 163, 883–895 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donaldson, M. S. Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutr. J. 3, 19 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Cicco, P. et al. Nutrition and breast cancer: a literature review on prevention, treatment and recurrence. Nutrients 11, 1514 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. et al. Thermohydrogel containing melanin for photothermal cancer therapy. Macromol. Biosci. 17, 1600371 (2017).

    Article 

    Google Scholar
     

  • Zhao, X. et al. Melanin-inspired design: preparing sustainable photothermal materials from lignin for energy generation. ACS Appl. Mater. Interfaces 13, 7600–7607 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K. et al. Melanin-perovskite composites for photothermal conversion. Adv. Energy Mater. 9, 1901753 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saeedi, M., Khezri, K., Zakaryaei, A. S. & Mohammadamini, H. A comprehensive review of the therapeutic potential of alpha-arbutin. Phytother. Res. 35, 4136–4154 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zolghadri, S. et al. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 34, 279–309 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. L. et al. Spectroscopy and molecular docking analysis reveal structural specificity of flavonoids in the inhibition of alpha-glucosidase activity. Int. J. Biol. Macromol. 152, 981–989 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Prakash, J. et al. Tumor-targeted intracellular delivery of anticancer drugs through the mannose-6-phosphate/insulin-like growth factor II receptor. Int. J. Cancer 126, 1966–1981 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarna, M., Krzykawska-Serda, M., Jakubowska, M., Zadlo, A. & Urbanska, K. Melanin presence inhibits melanoma cell spread in mice in a unique mechanical fashion. Sci. Rep. 9, 9280 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halaban, R. et al. Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc. Natl Acad. Sci. USA 94, 6210–6215 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wellbrock, C. & Arozarena, I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res. 28, 390–406 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, X., Fiske, B., Kawakami, A., Li, J. & Fisher, D. E. Regulation of MITF stability by the USP13 deubiquitinase. Nat. Commun. 2, 414 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, M. et al. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14, 301–312 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabra, M. B. I. et al. Dietary glutamine supplementation suppresses epigenetically-activated oncogenic pathways to inhibit melanoma tumour growth. Nat. Commun. 11, 3326 (2020).

    Article 

    Google Scholar
     

  • Gonzalez, P. S. et al. Mannose impairs tumour growth and enhances chemotherapy. Nature 563, 719 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, M. X. & Yang, Y. W. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017).

    Article 

    Google Scholar
     

  • Zahorowska, B., Crowe, P. J. & Yang, J. L. Combined therapies for cancer: a review of EGFR-targeted monotherapy and combination treatment with other drugs. J. Cancer Res. Clin. Oncol. 135, 1137–1148 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 574, 268–272 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marullo, R. et al. The metabolic adaptation evoked by arginine enhances the effect of radiation in brain metastases. Sci. Adv. 7, eabg1964 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img