Connect with us


NASA’s OSIRIS-REx spacecraft lands on asteroid in bid to collect samples




Artist’s illustration of the OSIRIS-REx spacecraft touching down on asteroid Bennu. Credit: NASA/Goddard/CI Lab

A robotic arm extended from NASA’s OSIRIS-REx spacecraft briefly contacted the rugged surface of asteroid Bennu Tuesday to gobble up pristine samples, a climactic moment in the $1 billion mission to bring asteroid material back to Earth in 2023.

The daring touch and go landing was the first attempt by a U.S. spacecraft to collect a sample from an asteroid. Once the specimens are back on Earth, scientists hope to learn more about the origin and evolution of the solar system.

The materials could provide clues about how water and the seeds of life made their way to Earth.

Signals racing across a 207-million-mile (333-million-kilometer) gulf between Bennu and Earth reached OSIRIS-REx mission control at 6:12 p.m. EDT (2212 GMT), confirming the spacecraft gently touched down on the airless asteroid after a glacial final descent at just 0.2 mph (10 centimeters per second).

Cheers erupted at the Lockheed Martin control center near Denver, where scientists and engineers tracked OSIRIS-REx as it moved in for an automated touch and go landing. Navigation algorithms on-board the spacecraft safely guided OSIRIS-REx to an on-target touchdown within a predetermined zone the size of a tennis court, avoiding a craggy 23-foot-tall (7-meter) nearby boulder that scientists dubbed “Mount Doom.”

Moments later, telemetry data from the spacecraft confirmed its sampling mechanism — known as the TAGSAM — fired a bottle of high-pressure nitrogen gas. The discharge was expected to stir up dust and gravelly material into a sample collection chamber at the end of OSIRIS-REx’s 11-foot-long (3.35-meter) robotic arm.

After spending just seconds on the asteroid’s surface, OSIRIS-REx pulsed thrusters to back away from Bennu. The spacecraft can fly around Bennu with tiny impulses from its rocket engines, thanks to asteroid’s tenuous gravity field.

Preliminary data Tuesday suggested the spacecraft executed the touch and go, or TAG, maneuver as planned.

“The pyro bottles fired,” said Dante Lauretta, OSIRIS-REx’s principal investigator from the University of Arizona. “TAGSAM operated, the back-away thrusters fired, so we’re safely moving away from the asteroid surface. The spacecraft did everything it was supposed to do. So we did it. We tagged the surface of the asteroid.”

Scientists hoped the mission collected at least 2.1 ounces, or 60 grams, of specimens from Bennu. But it will take about a week to confirm how big of a sample OSIRIS-REx scooped up from the asteroid.

“We are on the way to returning the largest sample brought home from space since Apollo,” tweeted NASA Administrator Jim Bridenstine. “If all goes well, this sample will be studied by scientists for generations to come!”

The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer launched from Cape Canaveral in September 2016 aboard a United Launch Alliance Atlas 5 rocket. The Lockheed Martin-built spacecraft reached Bennu in December 2018, and has surveyed the asteroid at centimeter-scale resolution for nearly two years.

The explorer found Bennu was more rugged than scientists expected. Instead of arriving at an asteroid with fields of fine-grained soils, OSIRIS-REx returned images showing Bennu was covered in boulders.

Engineers devised a new way for OSIRIS-REx to navigate around the asteroid using natural feature tracking algorithms. The guidance system compared real-time images from the spacecraft’s navigation cameras to a topographic map loaded into the on-board computer, allowing OSIRIS-REx’s autopilot control system to determine its location and avoid contacting dangerous hazards.

“We have overcome the amazing challenges that this asteroid has thrown at us, and the spacecraft appears to have operated flawlessly,” Lauretta said on NASA TV’s broadcast of the touch and go landing. “We made it down to the asteroid surface. We were in contact. The gas bottles fired.”

The spacecraft was expected to contact Bennu’s surface for 6 to 16 seconds, with its arm outstretched like a pogo stick. The spacecraft climbed away from Bennu, rising back into space over the asteroid’s north pole.

“We don’t know how long we were in contact yet,” Lauretta said. “That’s some reconstructed information that we’re going to have to put together over the next few hours as the data come in. We backed away successfully from the asteroid surface. The team is exuberant back there. Emotions are high. Everybody is really proud, and we have some work to do to determine how much sample that we have collected.”

Once OSIRIS-REx moved to a safe distance from the asteroid, the spacecraft was scheduled to contact mission control with its high-gain antenna. That will speed up the flow of data streaming down from the spacecraft, which was broadcasting low-rate telemetry during the critical moments of the touch and go landing.

Ground teams are eager to see pictures captured by SAMCAM, a close-range camera designed to monitor the sampling maneuver and see if any asteroid materials made it inside the collection chamber.

“Those SAMCAM images are going to tell us an enormous amount of information about how the events of today went,” Lauretta said. “We’re going to be looking at a whole series of images as we descended down to the surface, made contact, fired that gas bottle, and I really want to know how that surface responded.”

If the surface appears scarred, the nitrogen discharge likely disrupted the asteroid material enough to force some of it into the spacecraft’s sampling mechanism.

“We haven’t done this before, so this is new territory for us, and the whole science team, I know, is really looking forward to that information,” he said. “For one thing, it’ll tell us the likelihood of sample collection, kind of a probabilistic assessment. There will probably be a lot of science that comes out of that as well.”

NASA plans to release images from the sampling attempt Wednesday, once the pictures are beamed back to Earth and processed.

“Kudos to the team,” Lauretta said Tuesday. “It’s an amazing experience. History was made tonight.”

On Saturday, controllers are scheduled to command OSIRIS-REx into a spin maneuver to measure its moment of inertia. Engineers will compare the results to a similar maneuver before the sampling run, yielding an estimate of how much mass the spacecraft grabbed from Bennu.

The mission’s requirement was to retrieve at least 2.1 ounces, or 60 grams, of material from the asteroid. But scientists hoped OSIRIS-REx could collect much more, perhaps as much as 4.4 pounds, or 2 kilograms, of pebbles and dust grains.

If managers are satisfied OSIRIS-REx has gathered at least 60 grams of samples, NASA will call it a success and prepare the spacecraft to begin its return journey to Earth next March. If not, the spacecraft could try another touch and go landing as soon as January to snatch up more asteroid material.

OSIRIS-REx is scheduled to release its return capsule to parachute to a landing in the Utah desert on Sept. 24, 2023.

Shaped like a spinning top, Bennu measures around a third of a mile (500 meters) in diameter and rotates once on its axis every 4.3 hours. Named for a bird-like ancient Egyptian deity linked with the sun, creation and rebirth, Bennu follows a path around the sun that intersects Earth’s orbit, and the asteroid makes a relatively close approach to Earth once every six years.

That makes Bennu a potentially hazardous asteroid, and it poses a low threat of eventually hitting Earth. There is a 1-in-2,700 chance of Bennu impacting Earth in the late 2100s.

Bennu was discovered in 1999 by a survey with a ground-based telescope searching for near-Earth asteroids. OSIRIS-REx is the first mission to visit Bennu.

Since arriving at Bennu nearly two years ago, OSIRIS-REx has determined the asteroid is shedding material into space. The mission has also found that Bennu — known as a B-type asteroid — is covered in carbon-rich, water-bearing minerals. The organic material may contain carbon in a form often found in biology or in compounds associated with biology, scientists announced Oct. 8.

“The abundance of carbon-bearing material is a major scientific triumph for the mission,” Lauretta said earlier this month. “We are now optimistic that we will collect and return a sample with organic material — a central goal of the OSIRIS-REx mission.”

In a press release accompanying the announcement of the new scientific data earlier this month, NASA described Bennu as a “diamond-shaped pile of rubble floating in space.”

Data from NASA’s OSIRIS-REx spacecraft was used to create this shape model of asteroid Bennu at 75-centimeter resolution. Credit: NASA/Goddard/University of Arizona

Scientists said OSIRIS-REx’s targeted touchdown site — dubbed “Nightingale” — also harbors the signature of organic materials, the building blocks of life. The Nightingale location on Bennu’s northern hemisphere is situated inside inside a 460-foot (140-meter) crater, but the area deemed safe for the spacecraft to touch is 52 feet (16 meters) across.

The spacecraft’s solar panels extend more than 20 feet, or 6.2 meters, tip-to-tip.

“It’s kind of a tight fit,” Lauretta said earlier this year.

But scientists expect Nightingale to provide a rich return. Observations from OSIRIS-REx also indicate the material at the touch and go was only recently exposed to the harsh environment of space, meaning the mission could snag pristine samples that have been undisturbed for most of the solar system’s 4.5 billion-year history.

OSIRIS-REx’s descent toward Bennu on Tuesday lasted more than four hours from the time it left its orbit around the asteroid.

After commencing its descent, the spacecraft extended the TAGSAM sampling arm and moved closer to the asteroid. In the final hour before touchdown, OSIRIS-REx turned to point its sampling arm and navigation cameras toward Bennu, then moved its two solar array panels into a “Y-wing” configuration above the craft’s main body, ensuring the wings did not hit the asteroid’s surface.

Two more maneuvers — known as the checkpoint and matchpoint burns — began the terminal descent phase and slowed the spacecraft’s approach to the asteroid to a fraction of a walking pace.

The mission’s sampling mechanism — about the size of a dinner plate — was expected to scour up bits of dust and rock from as deep as 8 inches (20 centimeters) beneath Bennu’s surface, where material should be shielded from wild temperature swings that could damage sensitive organics.

Invented by a Lockheed Martin engineer, the TAGSAM nozzle is designed to trap samples blown away by nitrogen gas and suck them into a collector with a rush of air, similar to a reverse vacuum cleaner.

“The best outcome would be that we would collect a massive sample,” said Heather Enos, OSIRIS-REx’s deputy principal investigator at the University of Arizona, before the sample collection attempt. “We say we have a requirement for 60 grams, or 2 ounces, but we have the capability of collecting up to 2 kilograms. I would love for that capsule to be completely full.”

NASA has set Oct. 30 for a key decision point on whether to declare success, or continue planning for another sampling run at a different site on Bennu.

This illustration shows the relative sizes of asteroid Bennu, the Empire State Building, and the Eiffel Tower. Credit: NASA/Goddard/University of Arizona

Once they are confident the spacecraft has the asteroid samples, ground controllers will send commands for the TAGSAM arm to place the collection canister inside OSIRIS-REx’s landing capsule. Explosive bolts will sever the TAGSAM head from the craft’s robotic arm, and the capsule’s lid will close over the device for the trip home.

After OSIRIS-REx’s return carrier lands back on Earth, a recovery team will transport the craft to NASA’s Johnson Space Center in Houston, where scientists will open the canister inside a pristine sample curation laboratory and begin studying its contents.

Researchers at Johnson’s astromaterials lab also analyze rocks returned from the moon by the Apollo astronauts.

Enos said scientists hope for asteroid materials that “represent Bennu’s signatures of carbon-rich and hydrated minerals. That would be amazing, and I have every reason to believe that that’s going to be in that sample.”

“In terms of the size distribution, I would hope that we have a couple of different size distributions. I would like tiny grains. I would like a couple almost at the maximum 2 centimeters that we can ingest,” Enos said Monday. “So diversity is key to be able to get the most out of the sample. That is what my money is on tomorrow.”

The team that developed and built the OSIRIS-REx spacecraft took extra measures to ensure the asteroid sample will not be contaminated by organic materials from Earth.

Researchers will use optical and electron microscopes, super-computing labs, and synchrotron accelerators — instruments the size of a large room or a building — in their asteroid sample analysis.

Scientific equipment qualified to fly in space have to operate in extreme temperatures, an airless vacuum, and intense radiation, all while functioning on very little power.

Scientists will attempt to determine the chirality, or handedness, of amino acids and other compounds grabbed from Bennu. Molecules associated with life, such as DNA, have a distinctive orientation. In the case of DNA in organisms on Earth, the double helix always twists in a right-handed direction, and the atoms that make up amino acids in biology are almost always left-handed.

The preference for a left or right orientation among the atoms making up biological molecules makes it easier for chemicals to latch together and build more complex structures.

“Bennu is one of over a million known asteroids in our solar system, and these asteroids are relics of that earliest material that formed the planets in the solar system, and they hold the key information to unlocking how the solar system formed, and how it evolved over time,” said Lori Glaze, director of NASA’s planetary science division.

Data from OSIRIS-REx’s surveys of Bennu show many of the asteroid’s darkest boulders are weaker and more porous than expected. Scientists say most of the boulders on the asteroid are too weak to survive entry into Earth’s atmosphere, so the specimens targeted by OSIRIS-REx could offer a “missing link” because similar rocks are not well represented in meteorite collections.

“Returned samples from Bennu could help us answer some key astrobiology questions, such as how water and organic materials were delivered to Earth, and the role those key ingredients played in the early initiation of life on Earth.”

Another objective of the OSIRIS-REx mission is to characterize the forces pushing on Bennu and gradually changing its orbit. One of the forces is called the Yarkovsky effect, in which thermal emissions from an asteroid can alter its trajectory through the solar system. Solar radiation pressure is another influence on asteroid orbits.

That data will help scientists better predict when asteroids might threaten Earth.

While it is the first U.S. asteroid sample return probe, OSIRIS-REx is not the only spacecraft currently traveling the solar system on a mission to retrieve materials from an asteroid and bring them back to Earth.

Japan’s Hayabusa 2 spacecraft is on course to bring home samples from asteroid Ryugu on Dec. 6, capping a six-year expedition in space. The mission captured bits of rock from two locations on the half-mile-wide (900-meter) asteroid last year.

Like Bennu, Ryugu is an asteroid rich in carbon and organics.

NASA and the Japan Aerospace Exploration Agency have agreed to share Hayabusa 2 and OSIRIS-REx samples with scientists in each country.

“We have an exchange of scientists working on both missions, and of course, we’ll be exchanging portions of each other’s samples so we that we can maximize the science,” Glaze said.

“We believe (JAXA had) a very successful attempt, and they expect to bring back material, but our hope is with OSIRIS-REx, we’ll be collecting significantly more mass of samples, she said. “So between the two of them, we should have an excellent combination of samples to study.”

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.



2020 SpaceNews Awards Virtual Event




• Winners announced live

• Panel discussion with 2020 honorees

Join us Monday, Dec. 14 at 1 p.m. Eastern as we reveal the winners of the 2020 SpaceNews Awards for Excellence & Innovation.

This one-hour live event features a panel discussion with four of this year’s honorees. You won’t want to miss this lively discussion of 2020’s key accomplishments and what lies ahead for civil, commercial and military space.

• Government Leader of the Year
• Company Leader of the Year
• Large Company of the Year (key executive)
• Startup of the Year (key executive)

• SpaceNews Editor-in-Chief Brian Berger

• Jeff Foust, SpaceNews senior staff writer
• Sandra Erwin, SpaceNews national security reporter
• Debra Werner, SpaceNews correspondent

Registration required for this free event.


Continue Reading


FCC Chairman Ajit Pai to leave agency in January




SAN FRANCISCO — Federal Communications Commission Chairman Ajit Pai, who oversaw the agency’s work to streamline space-related regulation, announced plans to leave his post Jan. 20, 2021.

“It has been the honor of a lifetime to serve at the Federal Communications Commission, including as Chairman of the FCC over the past four years,” Pai said in a statement. “I am grateful to President Trump for giving me the opportunity to lead the agency in 2017, to President Obama for appointing me as a Commissioner in 2012, and to Senate Majority Leader McConnell and the Senate for twice confirming me.  To be the first Asian-American to chair the FCC has been a particular privilege.”

During Pai’s tenure, the FCC streamlined satellite licensing regulations for commercial space startups and established rules for the upcoming auction of 300 megahertz of satellite C-band spectrum for 5G cellular network operators, prompting 13 orders for new C-band satellites.

“It’s also been an honor to work with my fellow Commissioners to execute a strong and broad agenda,” Pai said in a statement. “Together, we’ve delivered for the American people over the past four years: closing the digital divide; promoting innovation and competition, from 5G on the ground to broadband from space; protecting consumers; and advancing public safety. ”

While Pai was chairman, the FCC also announced plans to award $20 billion in broadband subsidies under the Rural Digital Opportunity Fund and granted Ligado Networks permission to deploy a low-power broadband network opposed by commercial satellite operators, the U.S. Defense Department and the Commerce Department due to concern it would disrupt GPS signals.


Continue Reading


SES to provide satellite connectivity for U.S. military ‘internet of things’




SES has been tapped to provide satellite-based communications for the Advanced Battle Management System.

WASHINGTON — Satellite communications provider SES Government Solutions announced Nov. 30 it was selected by the U.S. Air Force to join the pool of vendors that will compete for contracts to build the military internet of things.

SES will compete to provide communications services for the Advanced Battle Management System program, or ABMS — an Air Force project that seeks to connect weapon systems and command centers so they can share data. ABMS is one piece of a larger Pentagon effort to build a military internet of things known as Combined Joint All Domain Command and Control. 

The Air Force requested $302 million for ABMS in fiscal year 2021, with projected funding of $3.2 billion over the next five years. A large group of vendors from across the defense, aerospace and tech industries have been selected so far to compete for up to $950 million worth of individual task orders the Air Force plans to award as it continues to test and develop the ABMS.

SpaceX’s Starlink and SES have been tapped to provide satellite-based communications for the ABMS. Starlink’s space internet is in low-Earth orbit, whereas SES has satellites in geosynchronous and medium-Earth orbit. 

“The commercial satcom we’ve seen is highly appealing to us,” said Will Roper, assistant secretary of the Air Force for acquisitions. 

The idea is to make ABMS an open architecture and to use commercial systems to link, for example, military combat aircraft that currently can’t pass information to other systems. The Air Force wants to be able to move data seamlessly from sensors to weapons systems and to cloud computing environments so information can be analyzed. 

Roper told reporters Nov. 24 that the ABMS architecture has been in the works for 18 months and that the Air Force will continue to conduct new demonstrations known as “on-ramps” over the coming years. 

He said ABMS will be a top priority for the Air Force, but it’s a challenging program that has many moving parts and is incompatible with the rigid military procurement system. “The internet of things has happened all around us but has not happened for the military,” said Roper. “The acquisition system we’ve inherited does not deal well with cross-cutting capabilities nor with capabilities that continually update.”

Roper directed in a memo Nov. 23 that the Air Force Rapid Capabilities Office will be responsible for integrating and fielding ABMS technologies. The RCO manages some of the Air Force’s most cutting-edge programs such as the X-37B spaceplane and the B-21 stealth bomber. 


Continue Reading


Launchspace Technologies proposes debris mitigation and collection constellations




Launchspace Technologies continues to refine its concept for establishing one constellation of satellites to track objects in orbit and a second to collect debris over the equator.

Since the company unveiled plans in 2017 to send Debris Collection Units into equatorial orbits, Launchspace Technologies has conducted a study funded by the U.S. Air Force, signed a NASA Space Act Agreement and won support from Airbus for its plan to test technology on the International Space Station’s Bartolomeo platform.

“We are positioning ourselves for the time when orbital debris becomes a real problem,” said Marshall Kaplan, Launchspace Technologies chief technology officer. “One of these days soon, we’re going to find out that we’re losing satellites at a rapid rate because of debris. At that point, it will be critical to address the debris problem because if we allow it to continue, we will lose access to space altogether.”

For Launchspace Technologies, the first task is developing a constellation of satellites equipped with sensors into equatorial low-Earth orbit to keep track of other satellites in low-Earth and geostationary orbit in addition to monitoring orbital debris and other threats, said John Bauman, Launchspace Technologies CEO.

The company plans to sell subscriptions to the data it acquires with its initial constellation to customers interested in space domain awareness, space traffic management and orbital debris mitigation, Bauman added.

Launchspace Technologies plans to establish a second constellation of satellites operating be-tween 600 and 1,200 kilometers to collect pieces of orbital debris large enough to hurt satellites but too small to be tracked with ground-based sensors.

The debris collector satellites will be designed to move out of the way to dodge active satellites and large debris, while capturing small debris, Bauman said.

Kaplan has applied for and been granted patents related to this work. In early 2020, for example, Kaplan was granted a patent to equip satellites with radial thrusters “to evade threats, such as orbital debris and/or hostile spacecraft without losing its relative position within a satellite constellation or experiencing the diminished services often attendant such maneuvers,” according to the patent.

Launchspace Technologies signed a Space Act Agreement with NASA in April to identify promising materials for collecting debris.

Kaplan envisions “a combination of plates with some filler material between the plates to absorb a lot of the energy.”

Launchspace Technologies plans to test its multilayer debris-collection technology for 12 months on Bartolomeo beginning in 2022. Airbus, which developed Bartolomeo and operates it with European Space Agency support, called the Launchspace Technologies demonstration mission “a bold step toward advancing the state of the art for debris collection and mitigation technologies and techniques,” in a Sept. 15 letter to Bauman.

Under the terms of the contract, Launchspace Technologies is paying fees to house its technology on Bartolomeo, but Airbus is not charging the company for transportation, astronaut crew time and other ISS resources.

Robert Walker, former House Science Committee chairman and former executive chairman of the Washington lobbying firm Wexler & Walker Public Policy Associates, began working with Launchspace Technologies to rally support for the company’s work.

Now, Walker, who founded moonWalker Associates in 2019, has joined the Launchspace Technologies board.

“I think the concept that they have is absolutely correct,” Walker said. “At the highest level both in the military and at NASA, no one has any real objections to this program. We are getting positive signals from the government, but we haven’t found an agency that’s prepared to step up with funding yet.”

This article originally appeared in the Nov. 16, 2020 issue of SpaceNews magazine.


Continue Reading
Blockchain2 hours ago

Greenheart Punt World Debut on DigiFinex

Blockchain6 hours ago

6 Reasons it’s Worth Taking the Risk of Investing in Cryptocurrency

Covid199 hours ago

How Canadian Retailers Are Handling The COVID-19 Lockdown

Startups9 hours ago

Why to Start Dating on Social Networks, Matchmaking Sites, and Apps?

Cleantech17 hours ago

800,000+ People Risk Water Shutoffs In The Great Lakes State

Cleantech18 hours ago

Shared Micromobility Is Replacing Car Trips

Cleantech18 hours ago

Renewables = 20% of US Electricity Generation in First 3 Quarters

Cleantech23 hours ago

Volkswagen Orders KUKA Robots For ID. Buzz, And Other Volkswagen Group News

Cleantech23 hours ago

The Corporate Carbon Accounting Market

Cleantech23 hours ago

You Should Care About Transportation Emissions. Here’s Why

SaaS23 hours ago

What is Video Search and How Can it Help Your Business?

Cyber Security1 day ago

Digitally Signed Bandook Trojan Reemerges in Global Spy Campaign

Amb Crypto1 day ago

Ethereum long-term Price Analysis: 30 November

Amb Crypto1 day ago

Bitcoin’s price could one day be $500,000: Gemini’s Winklevoss brothers

SaaS1 day ago

How Can iPaaS Help Your Digital Marketing?

Aerospace1 day ago

2020 SpaceNews Awards Virtual Event

Cleantech1 day ago

The Renewable Energy Cows Come Home, Now With Green Ammonia

Amb Crypto1 day ago

What does Bitcoin’s Sentiment say about its future?

Globe NewsWire1 day ago

European Energy completes third quarter of 2020 with significant growth across the board

Amb Crypto1 day ago

Monero, Polkadot, Compound Price Analysis: 30 November

Amb Crypto1 day ago

Former Chief Digital Officer of Luxury brand LVMH joins Ledger 

Cleantech1 day ago

EV Aftermarket Virtual Trade Show (Show & Tell) Is Today — Join Us!

Cyber Security1 day ago

MacOS Users Targeted By OceanLotus Backdoor

Cleantech1 day ago

Townie Path Go! E-Bike: A Premium, Sturdy Electric Bike For Commuters & Fun

Cyber Security1 day ago

Pandemic, A Driving Force in 2021 Financial Crime

Aerospace1 day ago

FCC Chairman Ajit Pai to leave agency in January

SaaS1 day ago

Generative Media: The Future of Visual Marketing

Amb Crypto1 day ago

Bitcoin SV long-term Price Analysis: 30 November

Automotive1 day ago

Tesla gains permission to begin second phase of deforestation at Giga Berlin

Aerospace1 day ago

SES to provide satellite connectivity for U.S. military ‘internet of things’