Zephyrnet Logo

Intracerebral fate of organic and inorganic nanoparticles is dependent on microglial extracellular vesicle function – Nature Nanotechnology

Date:

  • Zheng, M., Tao, W., Zou, Y., Farokhzad, O. C. & Shi, B. Nanotechnology-based strategies for siRNA brain delivery for disease therapy. Trends Biotechnol. 36, 562–575 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 15, 819–829 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chertok, B. et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487–496 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Huang, H., Feng, W., Chen, Y. & Shi, J. L. Inorganic nanoparticles in clinical trials and translations. Nano Today 35, 100972 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, P., Le, Z., Liu, L. & Chen, Y. Therapeutic delivery to the brain via the lymphatic vasculature. Nano Lett. 20, 5415–5420 (2020).

  • Ma, F. et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci. Adv. 6, eabb4429 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cheon, J., Chan, W. & Zuhorn, I. The future of nanotechnology: cross-disciplined progress to improve health and medicine. Acc. Chem. Res. 52, 2405 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hawkins, S. J. et al. Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes. Nat. Nanotechnol. 13, 427–433 (2018).

  • Khan, A. M. et al. Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood–brain barrier model. Nanotoxicology 13, 221–239 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Buchman, J. T., Hudson-Smith, N. V., Landy, K. M. & Haynes, C. L. Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc. Chem. Res. 52, 1632–1642 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. Silver nanoparticles induce protective autophagy via Ca2+/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology 13, 369–391 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. & Ju, D. The role of autophagy in nanoparticles-induced toxicity and its related cellular and molecular mechanisms. Adv. Exp. Med. Biol. 1048, 71–84 (2018).

  • Onoda, A., Kawasaki, T., Tsukiyama, K., Takeda, K. & Umezawa, M. Carbon nanoparticles induce endoplasmic reticulum stress around blood vessels with accumulation of misfolded proteins in the developing brain of offspring. Sci. Rep. 10, 10028 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Maher, B. A. et al. Magnetite pollution nanoparticles in the human brain. Proc. Natl Acad. Sci. USA 113, 10797–10801 (2016).

  • Khlebtsov, N. & Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40, 1647–1671 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Skotland, T., Iversen, T. G., Llorente, A. & Sandvig, K. Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: possibilities and challenges. Adv. Drug Deliv. Rev. 186, 114326 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wei, Y. C., Quan, L., Zhou, C. & Zhan, Q. Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine 13, 1495–1512 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yang, G. et al. A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater. 31, e1901513 (2019).

    Article 

    Google Scholar
     

  • He, C. F. et al. Advances in biodegradable nanomaterials for photothermal therapy of cancer. Cancer Biol. Med. 13, 299–312 (2016).

    Article 

    Google Scholar
     

  • Tosi, G. et al. Insight on the fate of CNS-targeted nanoparticles. Part II: intercellular neuronal cell-to-cell transport. J. Control. Release 177, 96–107 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Borst, K., Dumas, A. A. & Prinz, M. Microglia: immune and non-immune functions. Immunity 54, 2194–2208 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bourquin, J. et al. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater. 30, e1704307 (2018).

    Article 

    Google Scholar
     

  • Gu, X. et al. Clearance of two organic nanoparticles from the brain via the paravascular pathway. J. Control. Release 322, 31–41 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tarasoff-Conway, J. M. et al. Clearance systems in the brain—implications for Alzheimer disease. Nat. Rev. Neurol. 11, 457–470 (2015).

  • Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article 

    Google Scholar
     

  • Meng, X. et al. The biological fate of the polymer nanocarrier material monomethoxy poly(ethylene glycol)-block-poly(d,l-lactic acid) in rat. Acta Pharm. Sin. B 11, 1003–1009 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Antsiferova, A. A., Kopaeva, M. Y., Kochkin, V. N. & Kashkarov, P. K. Kinetics of silver accumulation in tissues of laboratory mice after long-term oral administration of silver nanoparticles. Nanomaterials (Basel) 11, 3204 (2021).

    Article 
    CAS 

    Google Scholar
     

  • El-Drieny, E. et al. Histological and immunohistochemical study of the effect of gold nanoparticles on the brain of adult male albino rat. J. Microsc Ultrastruct. 3, 181–190 (2015).

    Article 

    Google Scholar
     

  • Ferreira, G. K. et al. Effect of acute and long-term administration of gold nanoparticles on biochemical parameters in rat brain. Mater. Sci. Eng. C 79, 748–755 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Arezki, Y. et al. Surface charge influences protein corona, cell uptake and biological effects of carbon dots. Nanoscale 14, 14695–14710 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Georgieva, J. V. et al. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood–brain barrier endothelial cells in vitro. Mol. Ther. 19, 318–325 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Weng, J. W. et al. Mediating bio-fate of polymeric cholecalciferol nanoparticles through rational size control. Biomater. Adv. 140, 213074 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Parhiz, H. et al. Unintended effects of drug carriers: big issues of small particles. Adv. Drug Deliv. Rev. 130, 90–112 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Datta, A. et al. Manumycin A suppresses exosome biogenesis and secretion via targeted inhibition of Ras/Raf/ERK1/2 signaling and hnRNP H1 in castration-resistant prostate cancer cells. Cancer Lett. 408, 73–81 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ren, J. & Guo, W. ERK1/2 regulate exocytosis through direct phosphorylation of the exocyst component Exo70. Dev. Cell 22, 967–978 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hsu, S. C., TerBush, D., Abraham, M. & Guo, W. The exocyst complex in polarized exocytosis. Int. Rev. Cytol. 233, 243–265 (2004).

  • Aikawa, Y. & Martin, T. F. ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. J. Cell Biol. 162, 647–659 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Yeh, Y. C., Lin, Y. P., Kramer, H. & Parekh, A. B. Single-nucleotide polymorphisms in Orai1 associated with atopic dermatitis inhibit protein turnover, decrease calcium entry and disrupt calcium-dependent gene expression. Hum. Mol. Genet. 29, 1808–1823 (2020).

  • McAndrews, K. M., LeBleu, V. S. & Kalluri, R. SIRT1 regulates lysosome function and exosome secretion. Dev. Cell 49, 302–303 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Polanco, J. C., Hand, G. R., Briner, A., Li, C. Z. & Gotz, J. Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol. 141, 235–256 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Iguchi, Y. et al. Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139, 3187–3201 (2016).

    Article 

    Google Scholar
     

  • Isaac, R., Reis, F. C. G., Ying, W. & Olefsky, J. M. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 33, 1744–1762 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Song, Q. et al. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-β. ACS Nano 8, 2345–2359 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Yao, L. et al. Nanoformulated α-mangostin ameliorates Alzheimer’s disease neuropathology by elevating LDLR expression and accelerating amyloid-β clearance. J. Control. Release 226, 1–14 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. https://doi.org/10.1002/0471143030.cb0322s30 (2006).

  • spot_img

    Latest Intelligence

    spot_img