Zephyrnet Logo

Increased red blood cell deformation in children and adolescents after SARS-CoV-2 infection – Scientific Reports

Date:

  • Tay, M. Z., Poh, C. M., Renia, L., MacAry, P. A. & Ng, L. F. P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jose, R. J. & Manuel, A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir. Med. 8, e46–e47 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard, L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol. Rep. 9, e14726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, S. C., Shao, S. C., Chen, Y. T., Chen, Y. C. & Hung, M. J. Incidence and mortality of pulmonary embolism in COVID-19: A systematic review and meta-analysis. Crit. Care 24, 464 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Favaron, E. et al. Capillary leukocytes, microaggregates, and the response to hypoxemia in the microcirculation of coronavirus disease 2019 patients. Crit. Care Med. 49, 661–670 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur, G., Sandeep, F., Olayinka, O. & Gupta, G. Morphologic changes in circulating blood cells of COVID-19 patients. Cureus 13, e13416 (2021).

    PubMed  PubMed Central  Google Scholar 

  • Pezeshki, A., Vaezi, A. & Nematollahi, P. Blood cell morphology and COVID-19 clinical course, severity, and outcome. J. Hematop. 14, 221–228 (2021).

    Article  PubMed  Google Scholar 

  • Singh, A., Sood, N., Narang, V. & Goyal, A. Morphology of COVID-19-affected cells in peripheral blood film. BMJ Case Rep. 13, 236117 (2020).

    Article  Google Scholar 

  • Zini, G., Bellesi, S., Ramundo, F. & d’Onofrio, G. Morphological anomalies of circulating blood cells in COVID-19. Am. J. Hematol. 95, 870–872 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanser, L. et al. Dynamics in anemia development and dysregulation of iron homeostasis in hospitalized patients with COVID-19. Metabolites 11, 653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layla, K. N. et al. Red blood cell profile in patients with mild, moderate and severe COVID-19. IMC J. Med. Sci. 15, 26–31 (2021).

    Article  Google Scholar 

  • Lippi, G., Henry, B. M. & Sanchis-Gomar, F. Red blood cell distribution is a significant predictor of severe illness in coronavirus disease 2019. Acta Haematol. 144, 360–364 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, S., Kannan, S., Khanna, P. & Singh, A. K. Role of red blood cell distribution width, as a prognostic indicator in COVID-19: A systematic review and meta-analysis. Rev. Med. Virol. 32, e2264 (2021).

    PubMed  PubMed Central  Google Scholar 

  • Di Carlo, D. A mechanical biomarker of cell state in medicine. J. Lab. Autom. 17, 32–42 (2012).

    Article  PubMed  Google Scholar 

  • Nader, E. et al. Increased blood viscosity and red blood cell aggregation in patients with COVID-19. Am. J. Hematol. 97, 283–292 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Piagnerelli, M. et al. Red blood cell shape and deformability in patients with COVID-19 acute respiratory distress syndrome. Front. Physiol. https://doi.org/10.3389/fphys.2022.849910 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Grau, M. et al. Even patients with mild COVID-19 symptoms after SARS-CoV-2 infection show prolonged altered red blood cell morphology and rheological parameters. J. Cell Mol. Med. 26, 3022–3030 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto, O. et al. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat. Methods 12, 199–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Toepfner, N. et al. Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood. Elife https://doi.org/10.7554/eLife.29213 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kräter, M. et al. Alterations in cell mechanics by actin cytoskeletal changes correlate with strain-specific rubella virus phenotypes for cell migration and induction of apoptosis. Cells 7, 136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bönsch, C., Kempf, C. & Ros, C. Interaction of parvovirus B19 with human erythrocytes alters virus structure and cell membrane integrity. J. Virol. 82, 11784–11791 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubankova, M. et al. Physical phenotype of blood cells is altered in COVID-19. Biophys. J. 120, 2838–2847 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, Y. et al. Epidemiology of COVID-19 among children in China. Pediatrics https://doi.org/10.1542/peds.2020-0702 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zepp, F. & Knuf, M. Coronavirus disease 2019 in childhood and adolescence. Monatsschr. Kinderheilkd. 169, 1010–1033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulyte, A. et al. Clustering and longitudinal change in SARS-CoV-2 seroprevalence in school children in the canton of Zurich, Switzerland: prospective cohort study of 55 schools. BMJ 372, n616 (2021).

    Article  PubMed  Google Scholar 

  • Ulyte, A. et al. SARS-CoV-2 seroprevalence in children, parents and school personnel from June 2020 to April 2021: cohort study of 55 schools in Switzerland. medRxiv 4, 397 (2022).

    Google Scholar 

  • Magnusson, K. et al. Healthcare use in 700 000 children and adolescents for six months after covid-19: before and after register based cohort study. BMJ 376, e066809 (2022).

    Article  PubMed  Google Scholar 

  • Radtke, T., Ulyte, A., Puhan, M. A. & Kriemler, S. Long-term symptoms after SARS-CoV-2 infection in children and adolescents. JAMA 326, 869–871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirsten, C. et al. Seroprevalence of SARS-CoV-2 in German secondary schools from October 2020 to July 2021: a longitudinal study. Infection 50, 1–8 (2022).

    Article  Google Scholar 

  • Herbig, M. et al. Real-time deformability cytometry: Label-free functional characterization of cells. Methods Mol. Biol. 1678, 347–369 (2018).

    Article  CAS  PubMed  Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, (2022). URL https://www.R-project.org/.

  • Döring, N. & Bortz, J. (2016) Datenanalyse. in Forschungsmethoden und Evaluation in den Sozial-und Humanwissenschaften (Springer, London).

  • Delacre, M., Lakens, D. & Leys, C. Why psychologists should by default use Welch’s t-test instead of student’s t-test. Int. Rev. Soc. Psychol. 30(92), 101 (2017).

    Google Scholar 

  • Cohen, J. Statistical power analysis for the behavioral sciences Lawrence Earlbaum associates (Lawrence Earlbaum Associates, 1988).

    Google Scholar 

  • Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    MathSciNet  MATH  Google Scholar 

  • Li, J., Lykotrafitis, G., Dao, M. & Suresh, S. Cytoskeletal dynamics of human erythrocyte. Proc. Natl. Acad. Sci. U. S. A. 104, 4937–4942 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton, N. M. & Bruce, L. J. Modelling the structure of the red cell membrane. Biochem. Cell Biol. 89, 200–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Thomas, T. et al. Evidence of structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. J. Proteome Res. 19, 4455–4469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosic, I., Cosic, D. & Loncarevic, I. RRM prediction of erythrocyte band3 protein as alternative receptor for SARS-CoV-2 virus. Appl. Sci. 10, 4053 (2020).

    Article  CAS  Google Scholar 

  • Russo, A., Tellone, E., Barreca, D., Ficarra, S. & Laganà, G. Implication of COVID-19 on erythrocytes functionality: Red blood cell biochemical implications and morpho-functional aspects. Int. J. Mol. Sci. 23, 2171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam, L. K. M. et al. Erythrocytes identify complement activation in patients with COVID-19. Am. J. Physiol.-Lung Cell. Mol. Physiol. 321, L485–L489 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bor-Kucukatay, M., Wenby, R. B., Meiselman, H. J. & Baskurt, O. K. Effects of nitric oxide on red blood cell deformability. Am. J. Physiol.-Heart Circ. Physiol. 284, H1577–H1584 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Leblond, P. F., Lacelle, P. L. & Weed, R. I. Cellular deformability: A possible determinant of the normal release of maturing erythrocytes from the bone marrow. Blood 37, 40–46 (1971).

    Article  CAS  PubMed  Google Scholar 

  • Akbar, A. N. & Gilroy, D. W. Aging immunity may exacerbate COVID-19. Science 369, 256–257 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fulop, T. et al. Immunosenescence and inflamm-aging as two sides of the same coin: Friends or foes?. Front. Immunol. 8, 1960 (2017).

    Article  PubMed  Google Scholar 

  • Shin, S., Ku, Y., Babu, N. & Singh, M. Erythrocyte deformability and its variation in diabetes mellitus. (2007).

  • Norton, J. & Rand, P. Decreased deformability of erythrocytes from smokers. Blood 57, 671–674 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Musielak, M. Red blood cell-deformability measurement: review of techniques. Clin. Hemorheol. Microcirc. 42, 47–64 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Ney, P. A., Christopher, M. M. & Hebbel, R. P. Synergistic effects of oxidation and deformation on erythrocyte monovalent cation leak. Blood 75, 1192–1198 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Reggiori, G., Occhipinti, G., De Gasperi, A., Vincent, J. L. & Piagnerelli, M. Early alterations of red blood cell rheology in critically ill patients. Crit. Care Med. 37, 3041–3046 (2009).

    Article  PubMed  Google Scholar 

  • Huang, C. et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 397, 220–232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misiti, F. SARS-CoV-2 infection and red blood cells: Implications for long term symptoms during exercise. Sports Med. Health Sci. 3, 181–182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam, L. K. M. et al. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci. Transl. Med. 13, eabj1008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotz, M. J. et al. Red blood cells homeostatically bind mitochondrial DNA through TLR9 to maintain quiescence and to prevent lung injury. Am. J. Respir. Crit. Care Med. 197, 470–480 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, H. L., Brodsky, I. E. & Mangalmurti, N. S. The evolving erythrocyte: red blood cells as modulators of innate immunity. J. Immunol. 201, 1343–1351 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Reva, I. et al. Erythrocytes as a target of SARS cov-2 in pathogenesis of COVID-19. Archiv EuroMedica 10, 5–11 (2020).

    Article  Google Scholar 

  • Ashby, W. The determination of the length of life of transfused blood corpuscles in man. J. Exp. Med. 29, 267 (1919).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mietke, A. et al. Extracting cell stiffness from real-time deformability cytometry: Theory and experiment. Biophys. J . 109, 2023–2036 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittwer, L. D., Reichel, F., Müller, P., Guck, J. & Aland, S. A new hyperelastic lookup table for RT-DC. Soft Matter 19, 2064–2073 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img