Zephyrnet Logo

Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics – Experimental & Molecular Medicine

Date:

  • Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, X. et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, M. et al. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci. Adv. 7, eabf4398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Benedicto, E. et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater. Sci. 10, 549–559 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y. Y. C. & Cullis, P. R. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale 11, 21733–21739 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Patel, S. et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao, Y. et al. Effect of PEGylation on biodistribution and gene silencing of siRNA/Lipid nanoparticle complexes. Pharm. Res. 30, 342–351 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Ju, Y. et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 16, 11769–11780 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Akinc, A. et al. Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol. Ther. 17, 872–879 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urits, I. et al. A review of patisiran (ONPATTRO®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol. Ther. 9, 301–315 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • National Center for Immunization and Respiratory Diseases (U.S.). Division of Viral Diseases. Moderna COVID-19 vaccine (also known as Spikevax) overview and safety. Centers for Disease Control and Prevention (2022), https://stacks.cdc.gov/view/cdc/115700.

  • Fabiani, M. et al. Effectiveness of the Comirnaty (BNT162b2, BioNTech/Pfizer) vaccine in preventing SARS-CoV-2 infection among healthcare workers, Treviso province, Veneto region, Italy, 27 December 2020 to 24 March 2021. Eurosurveillance 26, 2100420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma, M. et al. The landscape for lipid-nanoparticle-based genomic medicines. Nat. Rev. drug Discov. 22, 349–350 (2023).

    Article  CAS  PubMed  Google Scholar 

  • National Center for Immunization and Respiratory Diseases (U.S.). Division of Viral Diseases. Possible Side Effects After Getting a COVID-19 Vaccine. Centers for Disease Control and Prevention (2023), https://www.cdc.gov/coronavirus/2019-ncov/vaccines/expect/after.html.

  • Turvey, S. E. & Broide, D. H. Innate immunity. J. Allergy Clin. Immunol. 125, S24–S32 (2010).

    Article  PubMed  Google Scholar 

  • Nathan, C. Points of control in inflammation. Nature 420, 846–852 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Newton, K. & Dixit, V. M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol 4, 3 (2012).

    Article  Google Scholar 

  • Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L. et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9, 7204–7218 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang, S., Tanaka, T., Narazaki, M. & Kishimoto, T. Targeting interleukin-6 signaling in clinic. Immunity 50, 1007–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Platanias, L. C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5, 375–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Castro, F., Cardoso, A. P., Gonçalves, R. M., Serre, K. & Oliveira, M. J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 9, 847 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller, U. et al. Functional role of Type I and Type II interferons in antiviral defense. Science 264, 1918–1921 (1994).

    Article  PubMed  Google Scholar 

  • McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins, D. J. & Vogel, S. N. Space and time: new considerations about the relationship between Toll-like receptors (TLRs) and type I interferons (IFNs). Cytokine 74, 171–174 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia, M., Meurs, E. & Esteban, M. The dsRNA protein kinase PKR: virus and cell control. Biochimie 89, 799–811 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Kabelitz, D. Expression and function of Toll-like receptors in T lymphocytes. Curr. Opin. Immunol. 19, 39–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Bettelli, E., Oukka, M. & Kuchroo, V. K. T(H)-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 8, 345–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  • LaRosa, D. F. et al. T cell expression of MyD88 is required for resistance to Toxoplasma gondii. Proc. Natl Acad. Sci. 105, 3855–3860 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, B., Jones, L. L. & Geiger, T. L. IL-6 promotes T cell proliferation and expansion under inflammatory conditions in association with low-level RORγt expression. J. Immunol. 201, 2934–2946 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Korn, T. & Hiltensperger, M. Role of IL-6 in the commitment of T cell subsets. Cytokine 146, 155654 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Karikó, K., Ni, H., Capodici, J., Lamphier, M. & Weissman, D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 279, 12542–12550 (2004).

    Article  PubMed  Google Scholar 

  • Kokkinopoulos, I., Jordan, W. & Ritter, M. Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes. Mol. Immunol. 42, 957–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  PubMed  Google Scholar 

  • Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article  PubMed  Google Scholar 

  • Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alameh, M.-G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e2877 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  PubMed  Google Scholar 

  • Risma, K. A. et al. Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines. J. Allergy Clin. Immunol. 147, 2075–2082.e2072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma, A. K., Lavine, K. J. & Lin, C.-Y. Myocarditis after Covid-19 mRNA vaccination. N. Engl. J. Med. 385, 1332–1334 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Parums, D. V. Editorial: SARS-CoV-2 mRNA vaccines and the possible mechanism of vaccine-induced immune thrombotic thrombocytopenia (VITT). Med. Sci. Monit. 27, e932899 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura, N. et al. IgA vasculitis following COVID-19 vaccination. Mod. Rheumatol. Case Rep. 7, 122–126 (2023).

    Article  PubMed  Google Scholar 

  • Flemming, A. mRNA vaccine shows promise in autoimmunity. Nat. Rev. Immunol. 21, 72–72 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y. et al. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology 165, 386–401 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Laisuan, W. COVID-19 vaccine anaphylaxis: current evidence and future approaches. Front. Allergy 2, 801322 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung, S. I., Preclaro, I. A. C., Chung, W. H. & Wang, C. W. Immediate hypersensitivity reactions induced by COVID-19 vaccines: current trends, potential mechanisms and prevention strategies. Biomedicines 10, 1260 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson, L., Csuth, Á., Storsaeter, J., Garvey, L. H. & Jenmalm, M. C. Vaccine allergy: evidence to consider for COVID-19 vaccines. Curr. Opin. Allergy Clin. Immunol. 21, 401–409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimek, L. et al. Allergenic components of the mRNA-1273 vaccine for COVID-19: possible involvement of polyethylene glycol and IgG-mediated complement activation. Allergy 76, 3307–3313 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sellaturay, P., Nasser, S., Islam, S., Gurugama, P. & Ewan, P. W. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine. Clin. Exp. Allergy 51, 861–863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill, K. K., Kaddoumi, A. & Nazzal, S. PEG–lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication. J. Drug Target. 23, 222–231 (2015).

    Article  CAS  PubMed  Google Scholar 

  • D’souza, A. A. & Shegokar, R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 13, 1257–1275 (2016).

    Article  PubMed  Google Scholar 

  • Ibrahim, M. et al. Polyethylene glycol (PEG): the nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J. Control Release 351, 215–230 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, M. et al. PEGylated liposomes: immunological responses. Sci. Technol. Adv. Mater. 20, 710–724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Q. et al. Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal. Chem. 88, 11804–11812 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szebeni, J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol. Immunol. 61, 163–173 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Koide, H. et al. T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes. Int. J. Pharm. 392, 218–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Ishida, T., Wang, X., Shimizu, T., Nawata, K. & Kiwada, H. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J. Control. Release 122, 349–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Szebeni, J. et al. Complement activation-related cardiac anaphylaxis in pigs: role of C5a anaphylatoxin and adenosine in liposome-induced abnormalities in ECG and heart function. Am. J. Physiol. Heart Circ. Physiol. 290, H1050–H1058 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Guimarães, L. E., Baker, B., Perricone, C. & Shoenfeld, Y. Vaccines, adjuvants and autoimmunity. Pharm. Res. 100, 190–209 (2015).

    Article  Google Scholar 

  • Toussirot, É. & Bereau, M. Vaccination and induction of autoimmune diseases. Inflamm. Allergy Drug Targets 14, 94–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Wraith, D. C., Goldman, M. & Lambert, P. H. Vaccination and autoimmune disease: what is the evidence. Lancet 362, 1659–1666 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Banchereau, J. & Pascual, V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lövgren, T., Eloranta, M. L., Båve, U., Alm, G. V. & Rönnblom, L. Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50, 1861–1872 (2004).

    Article  PubMed  Google Scholar 

  • Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crow, M. K., Olferiev, M. & Kirou, K. A. Type I interferons in autoimmune disease. Annu. Rev. Pathol. 14, 369–393 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. et al. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J. Control. Release 235, 236–244 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Kimura, N. et al. Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery. ACS Omega 3, 5044–5051 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassett, K. J. et al. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J. Control. Release 335, 237–246 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, K. A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevers, S. et al. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol. Ther. 30, 3078–3094 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, T. et al. PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production. Int. J. Pharm. 588, 119792 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, T. et al. The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Mol. Pharm. 17, 944–953 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Thomas, S. N., Rohner, N. A. & Edwards, E. E. Implications of lymphatic transport to lymph nodes in immunity and immunotherapy. Annu. Rev. Biomed. Eng. 18, 207–233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vangasseri, D. P. et al. Immunostimulation of dendritic cells by cationic liposomes. Mol. Membr. Biol. 23, 385–395 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi, T. et al. Positively charged liposome functions as an efficient immunoadjuvant in inducing immune responses to soluble proteins. Biochem. Biophys. Res. Commun. 240, 793–797 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi, T. et al. Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins. J. Control. Release 61, 233–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Hilgers, L. A. & Snippe, H. DDA as an immunological adjuvant. Res. Immunol. 143, 494–503 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Hwang, T. L., Aljuffali, I. A., Lin, C. F., Chang, Y. T. & Fang, J. Y. Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles. Int. J. Nanomed. 10, 371–385 (2015).

    Google Scholar 

  • Lappalainen, K., Jääskeläinen, I., Syrjänen, K., Urtti, A. & Syrjänen, S. Comparison of cell proliferation and toxicity assays using two cationic liposomes. Pharm. Res. 11, 1127–1131 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Wan, C., Allen, T. M. & Cullis, P. R. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv. Transl. Res. 4, 74–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Semple, S. C. et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta 1510, 152–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wilson, S. C. et al. Real time measurement of PEG shedding from lipid nanoparticles in serum via NMR spectroscopy. Mol. Pharm. 12, 386–392 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Miteva, M. et al. Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials 38, 97–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Mehvar, R. Modulation of the pharmacokinetics and pharmacodynamics of proteins by polyethylene glycol conjugation. J. Pharm. Pharm. Sci. 3, 125–136 (2000).

    CAS  PubMed  Google Scholar 

  • Jiao, J. et al. The contribution of PEG molecular weights in PEGylated emulsions to the various phases in the accelerated blood clearance (ABC) phenomenon in rats. AAPS PharmSciTech. 21, 300 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., Wang, K. Q., Deng, Y. H. & Chen, D. W. Effects of cleavable PEG-cholesterol derivatives on the accelerated blood clearance of PEGylated liposomes. Biomaterials 31, 4757–4763 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Son, K. et al. Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes. J. Control. Release 322, 209–216 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., Hou, Y., Wang, H. & Lu, H. Polysarcosine as an alternative to PEG for therapeutic protein conjugation. Bioconjug. Chem. 29, 2232–2238 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Miao, L., Zhang, Y. & Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 20, 41 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guevara, M. L., Persano, F. & Persano, S. Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. Front. Chem. 8, 589959 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimosakai, R., Khalil, I. A., Kimura, S. & Harashima, H. mRNA-loaded lipid nanoparticles targeting immune cells in the spleen for use as cancer vaccines. Pharmaceuticals 15, 1017 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AWATE, S., Babiuk, L. & Mutwiri, G. Mechanisms of action of adjuvants. Front. Immunol 4, 114 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Brito, L. A., Malyala, P. & O’Hagan, D. T. Vaccine adjuvant formulations: a pharmaceutical perspective. Semin. Immunol. 25, 130–145 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Tom, J. K. et al. Applications of immunomodulatory immune synergies to adjuvant discovery and vaccine development. Trends Biotechnol. 37, 373–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. et al. Adjuvant incorporated lipid nanoparticles for enhanced mRNA-mediated cancer immunotherapy. Biomater. Sci. 8, 1101–1105 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Luan, N., Cao, H., Wang, Y., Lin, K. & Liu, C. Ionizable lipid nanoparticles enhanced the synergistic adjuvant effect of CpG ODNs and QS21 in a varicella zoster virus glycoprotein E subunit vaccine. Pharmaceutics 14, 973 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, D. & Tuo, W. QS-21: a potent vaccine adjuvant. Nat. Prod. Chem. Res. 3, e113 (2016).

    PubMed  Google Scholar 

  • Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Buschmann, M. D. et al. Nanomaterial delivery systems for mRNA vaccines. Vaccines 9, 65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y. et al. STING agonist-derived LNP-mRNA vaccine enhances protective immunity against SARS-CoV-2. Nano Lett. 23, 2593–2600 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Ripoll, M. et al. An imidazole modified lipid confers enhanced mRNA-LNP stability and strong immunization properties in mice and non-human primates. Biomaterials 286, 121570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz, María Esperanza, and Sebastián Scioli Montoto. et al. Routes of drug administration. ADME Processes in Pharmaceutical Sciences: Dosage, Design, and Pharmacotherapy Success, 97–133 (2018).

  • Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug. Chem. 31, 2046–2059 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Van der Jeught, K. et al. Dendritic cell targeting mRNA lipopolyplexes combine strong antitumor T-cell immunity with improved inflammatory safety. ACS Nano 12, 9815–9829 (2018).

    Article  PubMed  Google Scholar 

  • Anderluzzi, G. et al. The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency. J. Control. Release 342, 388–399 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Schnyder, J. L. et al. Comparison of equivalent fractional vaccine doses delivered by intradermal and intramuscular or subcutaneous routes: a systematic review. Travel Med. Infect. Dis. 41, 102007 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Van Hoecke, L. et al. The opposing effect of type I IFN on the T cell response by non-modified mRNA-lipoplex vaccines is determined by the route of administration. Mol. Ther. Nucleic Acids 22, 373–381 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. 118, e2109256118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerman, J. N. The importance of injecting vaccines into muscle. Different patients need different needle sizes. BMJ 321, 1237–1238 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Intapiboon, P. et al. Immunogenicity and safety of an intradermal BNT162b2 mRNA vaccine booster after two doses of inactivated SARS-CoV-2 vaccine in healthy population. Vaccines 9, 1375 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter, J. Intramuscular injection techniques. Nurs. Stand. 22, 35 (2008).

    PubMed  Google Scholar 

  • Leveque, D. Subcutaneous administration of anticancer agents. Anticancer Res. 34, 1579–1586 (2014).

    CAS  PubMed  Google Scholar 

  • Oussoren, C. & Storm, G. Liposomes to target the lymphatics by subcutaneous administration. Adv. Drug Deliv. Rev. 50, 143–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Romani, N. et al. Targeting skin dendritic cells to improve intradermal vaccination. Curr. Top. Microbiol. Immunol. 351, 113–138 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kis, E. E., Winter, G. & Myschik, J. Devices for intradermal vaccination. Vaccine 30, 523–538 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.-C., Jarrahian, C., Zehrung, D., Mitragotri, S. & Prausnitz, M. R. Delivery systems for intradermal vaccination. Intradermal Immun. 351, 77–112 (2012).

    Article  CAS  Google Scholar 

  • Fabrizi, F., Dixit, V., Magnini, M., Elli, A. & Martin, P. Meta-analysis: intradermal vs. intramuscular vaccination against hepatitis B virus in patients with chronic kidney disease. Aliment Pharm. Ther. 24, 497–506 (2006).

    Article  CAS  Google Scholar 

  • Schnyder, J. L. et al. Fractional dose of intradermal compared to intramuscular and subcutaneous vaccination – A systematic review and meta-analysis. Travel Med. Infect. Dis. 37, 101868 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung, G. S. & Kim, H. S. A novel technique to reduce pain from intradermal injection of botulinum toxin type A. Plast. Reconstr. Surg. Glob. Open 9, e3417 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ipp, M. M. et al. Adverse reactions to diphtheria, tetanus, pertussis-polio vaccination at 18 months of age: effect of injection site and needle length. Pediatrics 83, 679–682 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Gallorini, S., O’Hagan, D. T. & Baudner, B. C. In Mucosal Delivery of Biopharmaceuticals: Biology, Challenges and Strategies (eds José das Neves & Bruno Sarmento) 3–33 (Springer, 2014).

  • Tang, D. C. & Nguyen, H. H. The Yin-Yang arms of vaccines: disease-fighting power versus tissue-destructive inflammation. Expert Rev. Vaccines 13, 417–427 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Broos, K. et al. Particle-mediated intravenous delivery of antigen mRNA results in strong antigen-specific T-cell responses despite the induction of Type I interferon. Mol. Ther. Nucleic Acids 5, e326 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, T. et al. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov, R. & Janeway, C. Jr Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  • O’Neill, L. A. J., Golenbock, D. & Bowie, A. G. The history of Toll-like receptors — redefining innate immunity. Nat. Rev. Immunol. 13, 453–460 (2013).

    Article  PubMed  Google Scholar 

  • Kopp, E. B. & Medzhitov, R. The Toll-receptor family and control of innate immunity. Curr. Opin. Immunol. 11, 13–18 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Clement, M. et al. IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses. Nat. Commun. 13, 5294 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, S. et al. Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps–SHP-2 pathway. Nat. Immunol. 13, 551–559 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, D. et al. Epithelial Nlrp10 inflammasome mediates protection against intestinal autoinflammation. Nat. Immunol. 24, 585–594 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Kagan, J. C. Excess lipids on endosomes dictate NLRP3 localization and inflammasome activation. Nat. Immunol. 24, 3–4 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Karmacharya, P., Patil, B. R. & Kim, J. O. Recent advancements in lipid–mRNA nanoparticles as a treatment option for cancer immunotherapy. J. Pharm. Investig. 52, 415–426 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img