Zephyrnet Logo

Exploring the host range for genetic transfer of magnetic organelle biosynthesis – Nature Nanotechnology

Date:

  • Choi, J., Hwang, J., Kim, J. Y. & Choi, H. Recent progress in magnetically actuated microrobots for targeted delivery of therapeutic agents. Adv. Healthc. Mater. 10, 2001596 (2021).

    Article  CAS  Google Scholar 

  • Schmidt, C. K., Medina-Sánchez, M., Edmondson, R. J. & Schmidt, O. G. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 11, 5618 (2020).

    Article  CAS  Google Scholar 

  • Aubry, M. et al. Engineering E. coli for magnetic control and the spatial localization of functions. ACS Synth. Biol. 9, 3030–3041 (2020).

    Article  CAS  Google Scholar 

  • Cho, I. H. & Ku, S. Current technical approaches for the early detection of foodborne pathogens: challenges and opportunities. Int. J. Mol. Sci. 18, 2078 (2017).

    Article  Google Scholar 

  • Taukulis, R. et al. Magnetic iron oxide nanoparticles as MRI contrast agents – a comprehensive physical and theoretical study. Magnetohydrodynamics 51, 721–748 (2015).

    Article  Google Scholar 

  • Huang, J., Zhong, X., Wang, L., Yang, L. & Mao, H. Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2, 86–102 (2012).

    Article  Google Scholar 

  • Nishida, K. & Silver, P. A. Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway. PLoS Biol. 10, e1001269 (2012).

    Article  CAS  Google Scholar 

  • Nimpf, S. & Keays, D. A. Is magnetogenetics the new optogenetics? EMBO J. 36, 1643–1646 (2017).

    Article  CAS  Google Scholar 

  • Pekarsky, A. & Spadiut, O. Intrinsically magnetic cells: a review on their natural occurrence and synthetic generation. Front. Bioeng. Biotechnol. 8, 573183 (2020).

    Article  Google Scholar 

  • Del Sol-Fernández, S. et al. Magnetogenetics: remote activation of cellular functions triggered by magnetic switches. Nanoscale 14, 2091–2118 (2022).

    Article  Google Scholar 

  • Vargas, G. et al. Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: mini-review. Molecules 23, 2438 (2018).

    Article  Google Scholar 

  • Uebe, R. & Schüler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637 (2016).

    Article  CAS  Google Scholar 

  • Mickoleit, F. & Schüler, D. Generation of multifunctional magnetic nanoparticles with amplified catalytic activities by genetic expression of enzyme arrays on bacterial magnetosomes. Adv. Biosyst. 2, 1700109 (2018).

    Article  Google Scholar 

  • Mickoleit, F. & Schüler, D. Generation of nanomagnetic biocomposites by genetic engineering of bacterial magnetosomes. Bioinspired Biomim. Nanobiomaterials 8, 86–98 (2018).

    Article  Google Scholar 

  • Mickoleit, F., Lanzloth, C. & Schüler, D. A versatile toolkit for controllable and highly selective multifunctionalization of bacterial magnetic nanoparticles. Small 16, 1906922 (2020).

    Article  CAS  Google Scholar 

  • Kuzajewska, D., Wszołek, A., Żwierełło, W., Kirczuk, L. & Maruszewska, A. Magnetotactic bacteria and magnetosomes as smart drug delivery systems: a new weapon on the battlefield with cancer? Biology 9, 102 (2020).

    Article  CAS  Google Scholar 

  • Boucher, M. et al. Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor. Biomaterials 121, 167–178 (2017).

    Article  CAS  Google Scholar 

  • Kraupner, A. et al. Bacterial magnetosomes – nature’s powerful contribution to MPI tracer research. Nanoscale 9, 5788–5793 (2017).

    Article  CAS  Google Scholar 

  • Le Fèvre, R. et al. Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma. Theranostics 7, 4618–4631 (2017).

    Article  Google Scholar 

  • Alphandéry, E. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front. Bioeng. Biotechnol. 2, 5 (2014).

    Google Scholar 

  • Kolinko, I. et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotechnol. 9, 193–197 (2014).

    Article  CAS  Google Scholar 

  • Dziuba, M. V., Zwiener, T., Uebe, R. & Schüler, D. Single-step transfer of biosynthetic operons endows a non-magnetotactic Magnetospirillum strain from wetland with magnetosome biosynthesis. Environ. Microbiol. 22, 1603–1618 (2020).

    Article  CAS  Google Scholar 

  • Dziuba, M. V. et al. Silent gene clusters encode magnetic organelle biosynthesis in a non-magnetotactic phototrophic bacterium. ISME J. 17, 326–339 (2023).

    Article  CAS  Google Scholar 

  • Juodeikis, R. Engineering Membranes in Escherichia coli: the Magnetosome, LemA Protein Family and Outer Membrane Vesicles. PhD thesis, Univ. Kent (2016).

  • Mag-nano-tite: Creating magnetite nanoparticles in E.coli. iGEM https://2016.igem.org/Team:Kent/Description (2016).

  • iGEM toolkits: magnetosomes. iGEM https://2011.igem.org/Team:Washington/Magnetosomes/Magnet_Toolkit (2011).

  • Magnetosome formation: experiments & results. iGEM https://2014.igem.org/Team:Kyoto/Project/Magnetosome_Formation#experiments (2014).

  • Sistrom, W. R. A requirement for sodium in the growth of Rhodopseudomonas spheroides. J. Gen. Microbiol. 22, 778–785 (1960).

    Article  CAS  Google Scholar 

  • Heyen, U. & Schüler, D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 61, 536–544 (2003).

    Article  CAS  Google Scholar 

  • Pfennig, N. Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J. Bacteriol. 99, 597–602 (1969).

    Article  CAS  Google Scholar 

  • Moisescu, C., Ardelean, I. I. & Benning, L. G. The effect and role of environmental conditions on magnetosome synthesis. Front. Microbiol. 5, 49 (2014).

    Article  Google Scholar 

  • Grant, C. R. et al. Distinct gene clusters drive formation of ferrosome organelles in bacteria. Nature 606, 160–164 (2022).

    Article  CAS  Google Scholar 

  • Silva, K. T. et al. Genome-wide identification of essential and auxiliary gene sets for magnetosome biosynthesis in Magnetospirillum gryphiswaldense. mSystems 5, e00565–20 (2020).

    Article  CAS  Google Scholar 

  • Li, Y., Katzmann, E., Borg, S. & Schüler, D. The periplasmic nitrate reductase Nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol. 194, 4847–4856 (2012).

    Article  CAS  Google Scholar 

  • Li, Y. et al. Cytochrome cd1 nitrite reductase NirS is involved in anaerobic magnetite biomineralization in Magnetospirillum gryphiswaldense and requires NirN for proper d1 heme assembly. J. Bacteriol. 195, 4297–4309 (2013).

    Article  CAS  Google Scholar 

  • Li, Y., Raschdorf, O., Silva, K. T. & Schüler, D. The terminal oxidase cbb3 functions in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol. 196, 2552–2562 (2014).

    Article  Google Scholar 

  • Wang, Q. et al. Iron response regulator protein IrrB in Magnetospirillum gryphiswaldense MSR-1 helps control the iron/oxygen balance, oxidative stress tolerance, and magnetosome formation. Appl. Environ. Microbiol. 81, 8044–8053 (2015).

    Article  CAS  Google Scholar 

  • Li, Y. et al. The oxygen sensor MgFnr controls magnetite biomineralization by regulation of denitrification in Magnetospirillum gryphiswaldense. BMC Microbiol. 14, 153 (2014).

    Article  Google Scholar 

  • Qi, L. et al. Fur in Magnetospirillum gryphiswaldense influences magnetosomes formation and directly regulates the genes involved in iron and oxygen metabolism. PLoS ONE 7, e29572 (2012).

    Article  CAS  Google Scholar 

  • Kolinko, S., Richter, M., Glöckner, F. O., Brachmann, A. & Schüler, D. Single-cell genomics reveals potential for magnetite and greigite biomineralization in an uncultivated multicellular magnetotactic prokaryote. Environ. Microbiol. Rep. 6, 524–531 (2014).

    Article  CAS  Google Scholar 

  • Popp, F., Armitage, J. P. & Schüler, D. Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway. Nat. Commun. 14, 5398 (2014).

    Article  Google Scholar 

  • Rong, C. et al. FeoB2 functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1. J. Bacteriol. 194, 3972–3976 (2012).

    Article  CAS  Google Scholar 

  • Rong, C. et al. Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res. Microbiol. 159, 530–536 (2008).

    Article  CAS  Google Scholar 

  • Nelson, L. M. & Knowles, R. Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Can. J. Microbiol. 24, 1395–1403 (1978).

    Article  CAS  Google Scholar 

  • Bergaust, L., Shapleigh, J., Frostegård, Å. & Bakken, L. Transcription and activities of NOx reductases in Agrobacterium tumefaciens: the influence of nitrate, nitrite and oxygen availability. Environ. Microbiol. 10, 3070–3081 (2008).

    Article  CAS  Google Scholar 

  • Kampschreur, M. J. et al. Metabolic modeling of denitrification in Agrobacterium tumefaciens: a tool to study inhibiting and activating compounds for the denitrification pathway. Front. Microbiol. 3, 370 (2012).

    Article  Google Scholar 

  • Hershberg, R. & Petrov, D. A. Selection on codon bias. Annu. Rev. Genet. 42, 287–299 (2008).

    Article  CAS  Google Scholar 

  • Gomes, A. L. C. et al. Genome and sequence determinants governing the expression of horizontally acquired DNA in bacteria. ISME J. 14, 2347–2357 (2020).

    Article  CAS  Google Scholar 

  • Mickoleit, F. et al. High-yield production, characterization, and functionalization of recombinant magnetosomes in the synthetic bacterium Rhodospirillum rubrum “magneticum”. Adv. Biol. 5, 2101017 (2021).

    Article  CAS  Google Scholar 

  • Richter, P., Melzer, B. & Müller, F. D. Interacting bactofilins impact cell shape of the MreB-less multicellular Rhodomicrobium vannielii. PLoS Genet. 19, e1010788 (2023).

    Article  CAS  Google Scholar 

  • Orsi, E., Beekwilder, J., Eggink, G., Kengen, S. W. M. & Weusthuis, R. A. The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol. Bioeng. 118, 531–541 (2021).

    Article  CAS  Google Scholar 

  • Li, M., Ning, P., Sun, Y., Luo, J. & Yang, J. Characteristics and application of Rhodopseudomonas palustris as a microbial cell factory. Front. Bioeng. Biotechnol. 10, 897003 (2022).

    Article  Google Scholar 

  • Strittmatter, W., Weckesser, J., Salimath, P. V. & Galanos, C. Nontoxic lipopolysaccharide from Rhodopseudomonas sphaeroides ATCC 17023. J. Bacteriol. 155, 153–158 (1983).

    Article  CAS  Google Scholar 

  • Lin, T. L. et al. Like cures like: pharmacological activity of anti-inflammatory lipopolysaccharides from gut microbiome. Front. Pharmacol. 11, 554 (2020).

    Article  CAS  Google Scholar 

  • Schultheiss, D. & Schüler, D. Development of a genetic system for Magnetospirillum gryphiswaldense. Arch. Microbiol. 179, 89–94 (2003).

    Article  CAS  Google Scholar 

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  Google Scholar 

  • Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinforma. Appl. 28, 1647–1649 (2012).

    Article  Google Scholar 

  • Contreras-Moreira, B. & Vinuesa, P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79, 7696–7701 (2013).

    Article  CAS  Google Scholar 

  • Waskom, M. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).

    Article  Google Scholar 

  • Schüler, D., Uhl, R., & Bäuerlein, E. A simple light scattering method to assay magnetism in Magnetospirillum gryphiswaldense. FEMS Microbiol. Lett 132, 139–145 (1995).

    Article  Google Scholar 

  • spot_img

    Home

    VC Cafe

    Latest Intelligence

    spot_img