Zephyrnet Logo

Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons – Nature Nanotechnology

Date:

  • Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Article  CAS  Google Scholar 

  • MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  CAS  Google Scholar 

  • Stubbins, A., Law, K. L., Muñoz, S. E., Bianchi, T. S. & Zhu, L. Plastics in the Earth system. Science 373, 51–55 (2021).

    Article  CAS  Google Scholar 

  • Peng, Y. M., Wu, P. P., Schartup, A. T. & Zhang, Y. X. Plastic waste release caused by COVID-19 and its fate in the global ocean. Proc. Natl Acad. Sci. USA 118, e2111530118 (2021).

    Article  CAS  Google Scholar 

  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  • Rahimi, A. & Garcia, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  Google Scholar 

  • Garcia, J. M. Catalyst: design challenges for the future of plastics recycling. Chem 1, 813–819 (2016).

    Article  CAS  Google Scholar 

  • Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    Article  CAS  Google Scholar 

  • Ignatyev, I., Thielemans, A., Vander, W. & Beke, B. Recycling of polymers: a review. ChemSusChem 7, 1579–1593 (2014).

    Article  CAS  Google Scholar 

  • Vollmer, I., Jenks, M. J. F., Gonzalez, R. M., Meirer, F. & Weckhuysen, B. M. Plastic waste conversion over a refinery waste catalyst. Angew. Chem. Int. Ed. 60, 16101–16108 (2021).

    Article  CAS  Google Scholar 

  • Martin, A. J., Mondelli, C., Jaydev, S. D. & Perez-Ramirez, J. Catalytic processing of plastic waste on the rise. Chem 7, 1487–1533 (2021).

    Article  CAS  Google Scholar 

  • Dufaud, V. R. & Basset, J. M. Catalytic hydrogenolysis at low temperature and pressure of polyethylene and polypropylene to diesels or lower alkanes by a zirconium hydride supported on silica-alumina: a step toward polyolefin degradation by the microscopic reverse of Ziegler–Natta polymerization. Angew. Chem. Int. Ed. 37, 806–810 (1998).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1521-3773(19980403)37:63.0.CO;2-6″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291521-3773%2819980403%2937%3A6%3C806%3A%3AAID-ANIE806%3E3.0.CO%3B2-6″ aria-label=”Article reference 12″ data-doi=”10.1002/(SICI)1521-3773(19980403)37:63.0.CO;2-6″>Article  CAS  Google Scholar 

  • Tennakoon, A. et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat. Catal. 3, 893–901 (2020).

    Article  CAS  Google Scholar 

  • Xun, W. et al. Size-controlled nanoparticles embedded in a mesoporous architecture leading to efficient and selective hydrogenolysis of polyolefins. J. Am. Chem. Soc. 144, 5323–5334 (2022).

    Article  Google Scholar 

  • Conk, R. J. et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 377, 1561–1566 (2022).

    Article  CAS  Google Scholar 

  • Wang, N. M. et al. Chemical recycling of polyethylene by tandem catalytic conversion to propylene. J. Am. Chem. Soc. 144, 18526–18531 (2022).

    Article  CAS  Google Scholar 

  • Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  CAS  Google Scholar 

  • Lee, W. T. et al. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts. Nat. Commun. 13, 4850 (2022).

    Article  CAS  Google Scholar 

  • Bandini, M., Melloni, A. & Umani-Ronchi, A. New catalytic approaches in the stereoselective Friedel–Crafts alkylation reaction. Angew. Chem. Int. Ed. 43, 550–556 (2004).

    Article  CAS  Google Scholar 

  • Matos, J. L. M. et al. Cycloisomerization of olefins in water. Angew. Chem. Int. Ed. 59, 12998–13003 (2020).

    Article  CAS  Google Scholar 

  • Liu, S. B., Kots, P. A., Vance, B. C., Danielson, A. & Vlachos, D. G. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 7, eabf8283 (2021).

    Article  CAS  Google Scholar 

  • Wang, D., Xie, Z. H., Porosoff, M. D. & Chen, J. G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics. Chem 7, 2277–2311 (2021).

    Article  CAS  Google Scholar 

  • Coonradt, H. L. & Garwood, W. E. Mechanism of hydrocracking. Reactions of paraffins and olefins. Ind. Eng. Chem. Res. 3, 38–45 (1964).

  • Zečević, J., Vanbutsele, G., de Jong, K. P. & Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528, 245–248 (2015).

    Article  Google Scholar 

  • Rorrer, J. E., Beckham, G. T. & Román-Leshkov, Y. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions. JACS Au. 1, 8–12 (2021).

    Article  CAS  Google Scholar 

  • Zhao, W., Chizallet, C., Sautet, P. & Raybaud, P. Dehydrogenation mechanisms of methyl-cyclohexane on γ-Al2O3 supported Pt13: impact of cluster ductility. J. Catal. 370, 118–129 (2019).

    Article  CAS  Google Scholar 

  • Tsai, M. C., Friend, C. M. & Muetterties, E. L. Dehydrogenation processes on nickel and platinum surfaces. Conversion of cyclohexane, cyclohexene, and cyclohexadiene to benzene. J. Am. Chem. Soc. 104, 2539–2543 (1982).

    Article  CAS  Google Scholar 

  • Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

    Article  Google Scholar 

  • Eschenbacher, A. et al. Highly selective conversion of mixed polyolefins to valuable base chemicals using phosphorus-modified and steam-treated mesoporous HZSM-5 zeolite with minimal carbon footprint. Appl. Catal. B 309, 121251 (2022).

    Article  CAS  Google Scholar 

  • Kongmanklang, C. & Rangsriwatananon, K. Hydrothermal synthesis of high crystalline silicalite from rice husk ash. J. Spectrosc. 2015, 696513 (2015).

    Article  Google Scholar 

  • Corma, A. State of the art and future challenges of zeolites as catalysts. J. Catal. 216, 298–312 (2003).

    Article  CAS  Google Scholar 

  • Wang, C. F. et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. Nat. Commun. 10, 4348 (2019).

    Article  Google Scholar 

  • Cnudde, P. et al. Experimental and theoretical evidence for the promotional effect of acid sites on the diffusion of alkenes through small-pore zeolites. Angew. Chem. Int. Ed. 60, 10016–10022 (2021).

    Article  CAS  Google Scholar 

  • Wang, N. et al. Molecular elucidating of an unusual growth mechanism for polycyclic aromatic hydrocarbons in confined space. Nat. Commun. 11, 1079 (2020).

    Article  CAS  Google Scholar 

  • Cnudde, P. et al. Light olefin diffusion during the MTO process on H‑SAPO-34: a complex interplay of molecular factors. J. Am. Chem. Soc. 142, 6007–6017 (2020).

    Article  CAS  Google Scholar 

  • Verboekend, D., Vile, G. & Perez-Ramirez, J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Adv. Funct. Mater. 22, 916–928 (2012).

    Article  CAS  Google Scholar 

  • Peng, X. B. et al. Impact of hydrogenolysis on the selectivity of the Fischer–Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles. Angew. Chem. Int. Ed. 54, 4553–4556 (2015).

    Article  CAS  Google Scholar 

  • Shoinkhorova, T. et al. Highly selective and stable production of aromatics via high-pressure methanol conversion. ACS Catal. 11, 3602–3613 (2021).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img