Zephyrnet Logo

Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene

Date:

  • Agency for Toxic Substances and Disease Registry. Toxicological Profile for 1,2-Dichloroethane (US Department of Health and Human Services, 2001); https://www.atsdr.cdc.gov/toxprofiles/tp38.pdf

  • Field, J. A. & Sierra-Alvare, R. Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev. Environ. Sci. Biotechnol. 3, 185–254 (2004).

    Article  CAS  Google Scholar 

  • American Chemistry Council. 2020 Guide to the Business of Chemistry (2020); https://www.americanchemistry.com/content/download/3640/file/2020-Guide-to-the-Business-of-Chemistry.pdf

  • Sherwood, J. European restrictions on 1,2‐dichloroethane: C−H activation research and development should be liberated and not limited. Angew. Chem. Int. Ed. 57, 14286–14290 (2018).

    Article  CAS  Google Scholar 

  • Leow, D. et al. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    Article  CAS  Google Scholar 

  • Wang, X. C. et al. Ligand-enabled meta-C–H activation using a transient mediator. Nature 519, 334–338 (2015).

    Article  CAS  Google Scholar 

  • Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C–H bond arylation. Science 323, 1593–1597 (2009).

    Article  CAS  Google Scholar 

  • The 2019 Toxics Release Inventory (TRI) National Analysis (United States Environmental Protection Agency, 2019); https://www.epa.gov/trinationalanalysis/releases-chemical-and-industry

  • National Primary Drinking Water Regulations (United StatesEnvironmental Protection Agency, 2009); https://www.epa.gov/sites/default/files/2016-06/documents/npwdr_complete_table.pdf

  • Vogel, T. et al. ES&T critical reviews: transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21, 722–736 (1987).

    Article  CAS  Google Scholar 

  • Capel, P. D. & Larson, S. J. A chemodynamic approach for estimating losses of target organic chemicals from water during sample holding time. Chemosphere 30, 1097–1107 (1995).

    Article  CAS  Google Scholar 

  • van der Zaan, B. et al. Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions. Water Res. 43, 3207–3216 (2009).

    Article  Google Scholar 

  • De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  Google Scholar 

  • Williams, C. K. et al. Electrocatalytic dechlorination of dichloromethane in water using a heterogenized molecular copper complex. Inorg. Chem. 60, 4915–4923 (2021).

    Article  CAS  Google Scholar 

  • Williams, C. K. et al. Hydrodechlorination of dichloromethane by a metal‐free triazole‐porphyrin electrocatalyst: demonstration of main‐group element electrocatalysis. Chem. Eur. J. 27, 6240–6246 (2021).

    Article  CAS  Google Scholar 

  • Scialdone, O. et al. Electrochemical abatement of chloroethanes in water: reduction, oxidation and combined processes. Electrochim. Acta 55, 701–708 (2010).

    Article  CAS  Google Scholar 

  • Scialdone, O. et al. Electrochemical incineration of 1,2-dichloroethane: effect of the electrode material. Electrochim. Acta 53, 7220–7225 (2008).

    Article  CAS  Google Scholar 

  • Sonoyama, N. & Sakata, T. Electrochemical continuous decomposition of chloroform and other volatile chlorinated hydrocarbons in water using a column type metal impregnated carbon fiber electrode. Environ. Sci. Technol. 33, 3438–3442 (1999).

    Article  CAS  Google Scholar 

  • Hori, Y. et al. Electrochemical dechlorination of chlorinated hydrocarbons—electrochemical reduction of chloroform in acetonitrile/water mixtures at high current density. Chem. Lett. 32, 230–231 (2003).

    Article  CAS  Google Scholar 

  • Gan, G. et al. Active sites in single-atom Fe–Nx–C nanosheets for selective electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Nano 14, 9929–9937 (2020).

    Article  CAS  Google Scholar 

  • Xu, F. et al. Manganese-based spinel core–shell nanostructures for efficient electrocatalysis of 1,2-dichloroethane. ACS Appl. Nano Mater. 3, 10778–10786 (2020).

    Article  CAS  Google Scholar 

  • Gan, G. et al. Identification of catalytic active sites in nitrogen-doped carbon for electrocatalytic dechlorination of 1,2-dichloroethane. ACS Catal. 9, 10931–10939 (2019).

    Article  CAS  Google Scholar 

  • Gan, G. et al. Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Catal. 11, 14284–14292 (2021).

    Article  CAS  Google Scholar 

  • Wu, Y. et al. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  CAS  Google Scholar 

  • Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

    Article  Google Scholar 

  • Wang, H. et al. An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat. Commun. 3, 917 (2012).

    Article  Google Scholar 

  • Yueshen, W. et al. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 4, 725–730 (2021).

    Article  Google Scholar 

  • Wu, Y. et al. Graphene‐veiled gold substrate for surface‐enhanced Raman spectroscopy. Adv. Mater. 25, 928–933 (2013).

    Article  Google Scholar 

  • Esenpınar, A. A. et al. Synthesis and electrochemistry of tetrakis (7-coumarinthio-4-methyl)-phthalocyanines, and preparation of their cinnamic acid and sodium cinnamate derivatives. Polyhedron 28, 33–42 (2009).

    Article  Google Scholar 

  • Akyüz, D. et al. Metallophthalocyanines bearing polymerizable {[5‐({(1E)‐[4‐(diethylamino)phenyl]methylene}amino)‐1‐naphthy1]oxy} groups as electrochemical pesticide sensor. Electroanalysis 29, 2913–2924 (2017).

    Article  Google Scholar 

  • Wiberg, K. B. The deuterium isotope effect. Chem. Rev. 55, 713–743 (1955).

    Article  CAS  Google Scholar 

  • Kahyarian, A. et al. Mechanism of the hydrogen evolution reaction in mildly acidic environments on gold. J. Electrochem. Soc. 164, H365 (2017).

    Article  CAS  Google Scholar 

  • Fang, Y. H. et al. Tafel kinetics of electrocatalytic reactions: from experiment to first-principles. ACS Catal. 4, 4364–4376 (2014).

    Article  CAS  Google Scholar 

  • Huang, D. et al. Elucidating the role of single-atom Pd for electrocatalytic hydrodechlorination. Environ. Sci. Technol. 55, 13306–13316 (2021).

    CAS  Google Scholar 

  • Mao, X. et al. Redox control for electrochemical dechlorination of trichloroethylene in bicarbonate aqueous media. Environ. Sci. Technol. 45, 6517–6523 (2011).

    Article  CAS  Google Scholar 

  • Hernandez, E. et al. Elastic properties of C and BxCyNz composite nanotubes. Phy. Rev. Lett. 80, 4502–4505 (1998).

    Article  CAS  Google Scholar 

  • Guanghua, G. et al. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9, 184–191 (1998).

    Article  Google Scholar 

  • Huang, Y. et al. Reaction mechanism for the hydrogen evolution reaction on the basal plane sulfur vacancy site of MoS2 using grand canonical potential kinetics. J. Am. Chem. Soc. 140, 16773–16782 (2018).

    Article  CAS  Google Scholar 

  • Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Sulfate (United States Environmental Protection, 2003); http://www.epa.gov/safewater/ccl/pdf/sulfate.pdf

  • Sun, M. et al. Electrified membranes for water treatment applications. ACS EST Engg. 1, 725–752 (2021).

    Article  CAS  Google Scholar 

  • Shahriary, L. et al. Graphene oxide synthesized by using modified Hummers approach. Int. J. Renew. Energy Environ. Eng. 2, 58–63 (2014).

    Google Scholar 

  • An, S. et al. A graphene oxide cookbook: exploring chemical and colloidal properties as a function of synthesis parameters. J. Colloid Interface Sci. 588, 725–736 (2021).

    Article  CAS  Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  • Mathew, K. et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  Google Scholar 

  • Sundararaman, R. & Goddard, W. A. III The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. J. Chem. Phys. 142, 064107 (2015).

    Article  Google Scholar 

  • Sundararaman, R. et al. JDFTx: software for joint density-functional theory. SoftwareX 6, 278–284 (2017).

    Article  Google Scholar 

  • Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  • Johnson, E. R. & Becke, A. D. A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections. J. Chem. Phys. 124, 174104 (2006).

    Article  Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  • Henkelman, G. et al. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  • Garrity, K. F. et al. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).

    Article  CAS  Google Scholar 

  • Bochevarov, A. D. et al. Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 113, 2110–2142 (2013).

    Article  CAS  Google Scholar 

  • Abraham, M. H. et al. Thermodynamics of solute transfer from water to hexadecane. J. Chem. Soc., Perkin Trans. 2, 291–300 (1990).

    Article  Google Scholar 

  • Berzinsh, U. et al. Isotope shift in the electron affinity of chlorine. Phys. Rev. A 51, 231–238 (1995).

    Article  CAS  Google Scholar 

  • Kelly, C. P. et al. Single-ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide. J. Phys. Chem. B 111, 408–422 (2007).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img