Zephyrnet Logo

Coherent electronic coupling in quantum dot solids induces cooperative enhancement of nonlinear optoelectronic responses – Nature Nanotechnology

Date:

  • Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article 
    CAS 

    Google Scholar
     

  • Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973).

    Article 

    Google Scholar
     

  • Gibbs, H. M., Vrehen, Q. H. F. & Hikspoors, H. M. J. Single-pulse superfluorescence in cesium. Phys. Rev. Lett. 39, 547–550 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Frolov, S. V. et al. Cooperative emission in π-conjugated polymer thin films. Phys. Rev. Lett. 78, 729–732 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Superradiant decay of cyclotron resonance of two-dimensional electron gases. Phys. Rev. Lett. 113, 047601 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nat. Phys. 12, 1005–1011 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Observation of Dicke cooperativity in magnetic interactions. Science 361, 794–797 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Scheibner, M. et al. Superradiance of quantum dots. Nat. Phys. 3, 106–110 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article 

    Google Scholar
     

  • Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Beard, M. C. et al. Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett. 9, 836–845 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Tang, J. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ono, M. et al. Impact of surface ligands on the photocurrent enhancement due to multiple exciton generation in close-packed nanocrystal thin films. Chem. Sci. 5, 2696–2701 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 10, 1013–1026 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Proppe, A. H. et al. Picosecond charge transfer and long carrier diffusion lengths in colloidal quantum dot solids. Nano Lett. 18, 7052–7059 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Karki, K. J. et al. Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell. Nat. Commun. 5, 5869 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Tahara, H., Sakamoto, M., Teranishi, T. & Kanemitsu, Y. Harmonic quantum coherence of multiple excitons in PbS/CdS core-shell nanocrystals. Phys. Rev. Lett. 119, 247401 (2017).

    Article 

    Google Scholar
     

  • Tahara, H., Sakamoto, M., Teranishi, T. & Kanemitsu, Y. Quantum coherence of multiple excitons governs absorption cross-sections of PbS/CdS core/shell nanocrystals. Nat. Commun. 9, 3179 (2018).

    Article 

    Google Scholar
     

  • Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Ellingson, R. J. et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Shabaev, A., Efros, Al. L. & Nozik, A. J. Multiexciton generation by a single photon in nanocrystals. Nano Lett. 6, 2856–2863 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Shabaev, A., Hellberg, C. S. & Efros, A. L. Efficiency of multiexciton generation in colloidal nanostructures. Acc. Chem. Res. 46, 1242–1251 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tahara, H., Sakamoto, M., Teranishi, T. & Kanemitsu, Y. Collective enhancement of quantum coherence in coupled quantum dot films. Phys. Rev. B 104, L241405 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hines, M. A. & Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844–1849 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Pattantyus-Abraham, A. G. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kang, I. & Wise, F. W. Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B 14, 1632–1646 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Tahara, H. & Kanemitsu, Y. Quantum interference measurements and their application to analysis of ultrafast photocarrier dynamics in semiconductor solar cell materials. Adv. Quantum Technol. 3, 1900098 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Klimov, V. I., McGuire, J. A., Schaller, R. D. & Rupasov, V. I. Scaling of multiexciton lifetimes in semiconductor nanocrystals. Phys. Rev. B 77, 195324 (2008).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Ultrafast exciton transport at early times in quantum dot solids. Nat. Mater. 21, 533–539 (2022).

    Article 
    CAS 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img