Zephyrnet Logo

Biosensors for healthcare: current and future perspectives

Date:

    • McNaught A.D.
    • Wilkinson A.

    IUPAC. Compendium of Chemical Terminology.

    2nd edn. Blackwell Scientific Publications, 1997

    • Clark L.C.
    • Lyons C.

    Electrode systems for continuous monitoring in cardiovascular surgery.

    Ann. N. Y. Acad. Sci. 1962; 102: 29-45

    • Updike S.J.
    • Hicks G.P.

    The enzyme electrode.

    Nature. 1967; 214: 986-988

    • Zhou L.
    • et al.

    A label-free electrochemical biosensor for microRNAs detection based on DNA nanomaterial by coupling with Y-shaped DNA structure and non-linear hybridization chain reaction.

    Biosens. Bioelectron. 2019; 126: 657-663

    • Zhang J.
    • et al.

    A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction.

    Biosens. Bioelectron. 2018; 102: 33-40

    • Guo J.
    • et al.

    An electrochemical biosensor for microRNA-196a detection based on cyclic enzymatic signal amplification and template-free DNA extension reaction with the adsorption of methylene blue.

    Biosens. Bioelectron. 2018; 105: 103-108

    • Salahandish R.
    • et al.

    Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene.

    Biosens. Bioelectron. 2018; 120: 129-136

    • Tian L.
    • et al.

    Gold nanoparticles superlattices assembly for electrochemical biosensor detection of microRNA-21.

    Biosens. Bioelectron. 2018; 99: 564-570

    • Chang J.
    • et al.

    Nucleic acid-functionalized metal–organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers.

    Anal. Chem. 2019; 91: 3604-3610

    • Wan Z.
    • et al.

    Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection.

    Carbon. 2020; 163: 385-394

    • Wu J.
    • et al.

    Label-free homogeneous electrochemical detection of microRNA based on target-induced anti-shielding against the catalytic activity of two-dimension nanozyme.

    Biosens. Bioelectron. 2021; 171112707

    • Tavallaie R.
    • et al.

    Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood.

    Nat. Nanotechnol. 2018; 13: 1066-1071

    • Xu S.
    • et al.

    One DNA circle capture probe with multiple target recognition domains for simultaneous electrochemical detection of miRNA-21 and miRNA-155.

    Biosens. Bioelectron. 2020; 149: 111848

    • Hou T.
    • et al.

    Truly immobilization-free diffusivity-mediated photoelectrochemical biosensing strategy for facile and highly sensitive microRNA assay.

    Anal. Chem. 2018; 90: 9591-9597

    • Jiao S.
    • et al.

    A novel biosensor based on molybdenum disulfide (MoS2) modified porous anodic aluminum oxide nanochannels for ultrasensitive microRNA-155 detection.

    Small. 2020; 162001223

    • Hwang M.T.
    • et al.

    Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors.

    Nat. Commun. 2020; 11: 1543

    • Sun Y.
    • Li T.

    Composition-tunable hollow Au/Ag SERS nanoprobes coupled with target-catalyzed hairpin assembly for triple-amplification detection of miRNA.

    Anal. Chem. 2018; 90: 11614-11621

    • Ma D.
    • et al.

    Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering.

    Biosens. Bioelectron. 2018; 101: 167-173

    • Pang Y.
    • et al.

    Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer.

    Biosens. Bioelectron. 2019; 130: 204-213

    • Lee J.U.
    • et al.

    Quantitative and specific detection of exosomal miRNAs for accurate diagnosis of breast cancer using a surface-enhanced Raman scattering sensor based on plasmonic head-flocked gold nanopillars.

    Small. 2019; 15: 1804968

    • Liu L.
    • et al.
    Ultrasensitive SERS detection of cancer-related miRNA-182 by MXene/[email protected] with controllable morphology and optimized self-internal standards.

    Adv. Opt. Mater. 2020; 8: 2001214

    • Lee T.
    • et al.

    Single functionalized pRNA/gold nanoparticle for ultrasensitive microRNA detection using electrochemical surface-enhanced Raman spectroscopy.

    Adv. Sci. 2020; 7: 1902477

    • Xue T.
    • et al.

    Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor.

    Nat. Commun. 2019; 10: 28

    • Zhang Y.
    • et al.

    Single-molecule analysis of microRNA and logic operations using a smart plasmonic nanobiosensor.

    J. Am. Chem. Soc. 2018; 140: 3988-3993

    • Dong H.
    • et al.

    A signal amplification strategy of CuPtRh CNB-embedded ammoniated Ti3C2 MXene for detecting cardiac troponin I by a sandwich-type electrochemical immunosensor.

    ACS Appl. Bio. Mater. 2020; 3: 377-384

    • Zhang C.
    • et al.
    Sandwich-type electrochemical immunosensor for sensitive detection of CEA based on the enhanced effects of Ag [email protected] spaced Hemin/rGO.

    Biosens. Bioelectron. 2019; 126: 785-791

    • Yang Y.
    • et al.
    An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of Echinoidea-shaped [email protected]2O nanoparticles for prostate specific antigen detection.

    Biosens. Bioelectron. 2018; 99: 450-457

    • Zhang T.
    • et al.
    The synergistic effect of Au-COF nanosheets and artificial peroxidase [email protected](NiPd) rhombic dodecahedra for signal amplification for biomarker detection.

    Nanoscale. 2019; 11: 20221-20227

    • Pakchin P.S.
    • et al.

    Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker.

    Biosens. Bioelectron. 2018; 122: 68-74

    • Zhao H.
    • et al.

    Electrochemical immunosensor based on Au/Co-BDC/MoS2 and DPCN/MoS2 for the detection of cardiac troponin I.

    Biosens. Bioelectron. 2021; 175112883

    • Kim S.H.
    • et al.

    A new coccolith modified electrode-based biosensor using a cognate pair of aptamers with sandwich-type binding.

    Biosens. Bioelectron. 2019; 123: 160-166

    • Nguyen T.T.-Q.
    • et al.

    A new cognate aptamer pair-based sandwich-type electrochemical biosensor for sensitive detection of Staphylococcus aureus.

    Biosens. Bioelectron. 2022; 198: 113835

    • Joe C.
    • et al.

    Aptamer duo-based portable electrochemical biosensors for early diagnosis of periodontal disease.

    Biosens. Bioelectron. 2022; 199: 113884

    • Lv H.
    • et al.
    An electrochemical sandwich immunosensor for cardiac troponin I by using nitrogen/sulfur co-doped graphene oxide modified with [email protected]g nanocubes as amplifiers.

    Microchim. Acta. 2019; 186: 416

    • Tang Z.
    • et al.
    A sensitive sandwich-type immunosensor for the detection of galectin-3 based on [email protected] nanocomposites and a novel AuPt-methylene blue nanorod.

    Biosens. Bioelectron. 2018; 101: 253-259

    • Chen Y.
    • et al.

    A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C60NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEI-functionalized metal-organic framework.

    Biomaterials. 2019; 216: 119253

    • Sun D.
    • et al.

    DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme.

    Biosens. Bioelectron. 2019; 142: 111578

    • Zhang T.
    • et al.

    Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification.

    Biosens. Bioelectron. 2018; 119: 176-181

    • Lv S.
    • et al.
    D. ZIF-8-assisted NaYF4:Yb,[email protected] converter with exonuclease III-powered DNA walker for near-infrared light responsive biosensor.

    Anal. Chem. 2020; 92: 1470-1476

    • Kim H.
    • et al.

    A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer’s disease biomarkers.

    Biosens. Bioelectron. 2018; 101: 96-102

    • Kim H.
    • et al.

    A nanoplasmonic biosensor for ultrasensitive detection of Alzheimer’s disease biomarker using a chaotropic agent.

    ACS Sens. 2019; 4: 595-602

    • Wu Q.
    • et al.

    A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection.

    Biosens. Bioelectron. 2019; 144: 111697

    • Chiavaioli F.
    • et al.

    Femtomolar detection by nanocoated fiber label-free biosensors.

    ACS Sens. 2018; 3: 936-943

    • Kaushik S.
    • et al.

    Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin.

    Sci. Rep. 2019; 9: 6987

    • Bekmurzayeva A.
    • et al.

    Ultra-wide, attomolar-level limit detection of CD44 biomarker with a silanized optical fiber biosensor.

    Biosens. Bioelectron. 2022; 208: 114217

    • Yazdanparast S.
    • et al.

    Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly(glutamic acid)/MWNT nanocomposite.

    Microchim. Acta. 2018; 185: 405

    • Tang S.
    • et al.
    A novel cytosensor based on [email protected] nanoflowers and AuNPs/acetylene black for ultrasensitive and highly specific detection of circulating tumor cells.

    Biosens. Bioelectron. 2018; 104: 72-78

    • Sun D.
    • et al.

    Competitive electrochemical platform for ultrasensitive cytosensing of liver cancer cells by using nanotetrahedra structure with rolling circle amplification.

    Biosens. Bioelectron. 2018; 120: 8-14

    • Shen H.
    • et al.

    Ultrasensitive aptasensor for isolation and detection of circulating tumor cells based on CeO2@Ir nanorods and DNA walker.

    Biosens. Bioelectron. 2020; 168112516

    • Zhou X.
    • et al.

    A amperometric immunosensor for sensitive detection of circulating tumor cells using a tyramide signal amplification-based signal enhancement system.

    Biosens. Bioelectron. 2019; 130: 88-94

    • Cao Y.
    • et al.

    Integration of fluorescence imaging and electrochemical biosensing for both qualitative location and quantitative detection of cancer cells.

    Biosens. Bioelectron. 2019; 130: 132-138

    • Yang J.
    • et al.

    In situ-generated multivalent aptamer network for efficient capture and sensitive electrochemical detection of circulating tumor cells in whole blood.

    Anal. Chem. 2020; 92: 7893-7899

    • Dou B.
    • et al.

    Aptamer-functionalized and gold nanoparticle array-decorated magnetic graphene nanosheets enable multiplexed and sensitive electrochemical detection of rare circulating tumor cells in whole blood.

    Anal. Chem. 2019; 91: 10792-10799

    • Shen C.
    • et al.

    Electrochemical detection of circulating tumor cells based on DNA generated electrochemical current and rolling circle amplification.

    Anal. Chem. 2019; 91: 11614-11619

    • Luo J.
    • et al.

    Photoelectrochemical detection of circulating tumor cells based on aptamer conjugated Cu2O as signal probe.

    Biosens. Bioelectron. 2020; 151111976

    • Wang S.-S.
    • et al.

    Direct plasmon-enhanced electrochemistry for enabling ultrasensitive and label-free detection of circulating tumor cells in blood.

    Anal. Chem. 2019; 91: 4413-4420

    • Loyez M.
    • et al.

    Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification.

    ACS Sens. 2020; 5: 454-463

    • Paterlini-Brechot P.
    • Benali N.L.

    Circulating tumor cells (CTC) detection: clinical impact and future directions.

    Cancer Lett. 2007; 253: 180-204

    • Amerongen A. van
    • et al.

    Lateral flow immunoassays.

    in: Vashist S.K. Luong J.H.T. Handbook of Immunoassay Technologies. Academic Press, 2018: 157-182

    • Raston N.H.A.
    • et al.

    A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin.

    Biosens. Bioelectron. 2017; 93: 21-25

    • Kim S.H.
    • et al.

    Specific detection of avian influenza H5N2 whole virus particles on lateral flow strips using a pair of sandwich-type aptamers.

    Biosens. Bioelectron. 2019; 134: 123-129

    • Lee B.H.
    • et al.

    The sensitive detection of ODAM by using sandwich-type biosensors with a cognate pair of aptamers for the early diagnosis of periodontal disease.

    Biosens. Bioelectron. 2019; 126: 122-128

    • Sena-Torralba A.
    • et al.

    Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy.

    Biosens. Bioelectron. 2020; 168: 112559

    • Loynachan C.N.
    • et al.

    Platinum nanocatalyst amplification: redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range.

    ACS Nano. 2018; 12: 279-288

    • Wang J.
    • et al.

    Ratiometric fluorescent lateral flow immunoassay for point-of-care testing of acute myocardial infarction.

    Angew. Chem. Int. Ed. 2021; 60: 13042-13049

    • Miller B.S.
    • et al.

    Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics.

    Nature. 2020; 587: 588-593

    • Deng X.
    • et al.

    Applying strand displacement amplification to quantum dots-based fluorescent lateral flow assay strips for HIV-DNA detection.

    Biosens. Bioelectron. 2018; 105: 211-217

    • Tran V.
    • et al.

    Rapid, quantitative, and ultrasensitive point-of-care testing: a portable SERS reader for lateral flow assays in clinical chemistry.

    Angew. Chem. Int. Ed. 2019; 58: 442-446

    • Wang C.
    • et al.

    Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses.

    ACS Appl. Mater. Inter. 2019; 11: 19495-19505

    • Zhang D.
    • et al.

    Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags.

    Biosens. Bioelectron. 2018; 106: 204-211

    • Rivas L.
    • et al.

    Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics.

    Lab Chip. 2014; 14: 4406-4414

    • Preechakasedkit P.
    • et al.

    Development of an automated wax-printed paper-based lateral flow device for alpha-fetoprotein enzyme-linked immunosorbent assay.

    Biosens. Bioelectron. 2018; 102: 27-32

    • Choi J.R.
    • et al.

    Lateral flow assay based on paper–hydrogel hybrid material for sensitive point-of-care detection of Dengue virus.

    Adv. Healthc. Mater. 2017; 6: 1600920

    • Kim W.
    • et al.

    Enhanced sensitivity of lateral flow immunoassays by using water-soluble nanofibers and silver-enhancement reactions.

    Sens. Actuators B Chem. 2018; 273: 1323-1327

    • Han G.-R.
    • et al.

    Paper/soluble polymer hybrid-based lateral flow biosensing platform for high-performance point-of-care testing.

    ACS Appl. Mater. Interfaces. 2020; 12: 34564-34575

    • Brangel P.
    • et al.

    A serological point-of-care test for the detection of IgG antibodies against Ebola virus in human survivors.

    ACS Nano. 2018; 12: 63-73

    • Funari R.
    • et al.

    Detection of antibodies against SARS-CoV-2 spike protein by gold nanospikes in an opto-microfluidic chip.

    Biosens. Bioelectron. 2020; 169: 112578

    • Najjar D.
    • et al.

    A lab-on-a-chip for the concurrent electrochemical detection of SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies in saliva and plasma.

    Nat. Biomed. Eng. 2022; 6: 968-978

    • Ali Md.A.
    • et al.

    Sensing of COVID-19 antibodies in seconds via aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes.

    Adv. Mater. 2021; 33: 2006647

    • Chen C.-A.
    • et al.

    Three-dimensional origami paper-based device for portable immunoassay applications.

    Lab Chip. 2019; 19: 598-607

    • Jiao Y.
    • et al.

    3D vertical-flow paper-based device for simultaneous detection of multiple cancer biomarkers by fluorescent immunoassay.

    Sens. Actuators B Chem. 2020; 306: 127239

    • Verma M.S.
    • et al.

    Sliding-strip microfluidic device enables ELISA on paper.

    Biosens. Bioelectron. 2018; 99: 77-84

    • Reboud J.
    • et al.

    Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities.

    Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 4834-4842

    • Wei B.
    • et al.

    Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen.

    Biosens. Bioelectron. 2018; 121: 41-46

    • Bhardwaj J.
    • et al.

    Vertical flow-based paper immunosensor for rapid electrochemical and colorimetric detection of influenza virus using a different pore size sample pad.

    Biosens. Bioelectron. 2019; 126: 36-43

    • Sun X.
    • et al.

    Ultrasensitive microfluidic paper-based electrochemical/visual biosensor based on spherical-like cerium dioxide catalyst for miR-21 detection.

    Biosens. Bioelectron. 2018; 105: 218-222

    • Yakoh A.
    • et al.

    3D capillary-driven paper-based sequential microfluidic device for electrochemical sensing applications.

    ACS Sens. 2019; 4: 1211-1221

    • Boonkaew S.
    • et al.

    An automated fast-flow/delayed paper-based platform for the simultaneous electrochemical detection of hepatitis B virus and hepatitis C virus core antigen.

    Biosens. Bioelectron. 2021; 193: 113543

    • Yakoh A.
    • et al.

    Paper-based electrochemical biosensor for diagnosing COVID-19: detection of SARS-CoV-2 antibodies and antigen.

    Biosens. Bioelectron. 2021; 176112912

    • Wang Y.
    • et al.

    Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers.

    Biosens. Bioelectron. 2019; 136: 84-90

    • Qi J.
    • et al.

    The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device.

    Biosens. Bioelectron. 2019; 142: 111533

    • Martinez A.W.
    • et al.

    Patterned paper as a platform for inexpensive, low-volume, portable bioassays.

    Angew. Chem. Int. Ed. 2007; 46: 1318-1320

    • Dungchai W.
    • et al.

    Electrochemical detection for paper-based microfluidics.

    Anal. Chem. 2009; 81: 5821-5826

    • Pardee K.
    • et al.

    Rapid, low-cost detection of Zika virus using programmable biomolecular components.

    Cell. 2016; 165: 1255-1266

    • Broughton J.P.
    • et al.

    CRISPR–Cas12-based detection of SARS-CoV-2.

    Nat. Biotechnol. 2020; 38: 870-874

    • Wang X.
    • et al.

    Clustered regularly interspaced short palindromic repeats/cas9-mediated lateral flow nucleic acid assay.

    ACS Nano. 2020; 14: 2497-2508

    • Gootenberg J.S.
    • et al.

    Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6.

    Science. 2018; 360: 439-444

    • Bruch R.
    • et al.

    CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics.

    Adv. Mater. 2019; 31: 1905311

    • Bruch R.
    • et al.

    CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free miRNA diagnostics.

    Biosens. Bioelectron. 2021; 177: 112887

    • Chen Q.
    • et al.

    CRISPR/Cas13a signal amplification linked immunosorbent assay for femtomolar protein detection.

    Anal. Chem. 2020; 92: 573-577

    • Zhao Q.
    • et al.

    Nano-immunosorbent assay based on Cas12a/crRNA for ultra-sensitive protein detection.

    Biosens. Bioelectron. 2021; 190: 113450

    • Lin X.
    • et al.

    CRISPR-Cas12a-mediated luminescence resonance energy transfer aptasensing platform for deoxynivalenol using gold nanoparticle-decorated Ti3C2Tx MXene as the enhanced quencher.

    J. Hazard. Mater. 2022; 433: 128750

    • Niu C.
    • et al.

    Aptamer assisted CRISPR-Cas12a strategy for small molecule diagnostics.

    Biosens. Bioelectron. 2021; 183: 113196

    • Xiong Y.
    • et al.

    Functional DNA regulated CRISPR-Cas12a sensors for point-of-care diagnostics of non-nucleic-acid targets.

    J. Am. Chem. Soc. 2020; 142: 207-213

    • Zhao X.
    • et al.

    A versatile biosensing platform coupling CRISPR–Cas12a and aptamers for detection of diverse analytes.

    Sci. Bull. 2021; 66: 69-77

    • Li C.-Y.
    • et al.

    Holographic optical tweezers and boosting upconversion luminescent resonance energy transfer combined clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a biosensors.

    ACS Nano. 2021; 15: 8142-8154

    • Dai Y.
    • et al.

    Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor.

    Angew. Chem. Int. Ed. 2019; 58: 17399-17405

    • Mei-Ling L.
    • et al.

    Y-shaped DNA nanostructures assembled-spherical nucleic acids as target converters to activate CRISPR-Cas12a enabling sensitive ECL biosensing.

    Biosens. Bioelectron. 2022; 214: 114512

    • Yuan G.
    • et al.

    A novel ‘signal on-off-super on’ sandwich-type aptamer sensor of CRISPR-Cas12a coupled voltage enrichment assay for VEGF detection.

    Biosens. Bioelectron. 2022; 114424

    • Iwasaki R.S.
    • Batey R.T.

    SPRINT: a Cas13a-based platform for detection of small molecules.

    Nucleic Acids Res. 2020; 48e101

    • Liang M.
    • et al.

    A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules.

    Nat. Commun. 2019; 10: 3672

    • Mastrototaro J.J.

    The MiniMed continuous glucose monitoring system.

    Diabetes Technol. Ther. 2000; 2: 13-18

    • Valdés-Ramírez G.
    • et al.

    Microneedle-based self-powered glucose sensor.

    Electrochem. Commun. 2014; 47: 58-62

    • Heifler O.
    • et al.

    Clinic-on-a-needle array toward future minimally invasive wearable artificial pancreas applications.

    ACS Nano. 2021; 15: 12019-12033

    • Lipani L.
    • et al.

    Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform.

    Nat. Nanotechnol. 2018; 13: 504-511

    • Kim J.
    • et al.

    Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform.

    Adv. Sci. 2018; 5: 1800880

    • Shibata H.
    • et al.

    Injectable hydrogel microbeads for fluorescence- based in vivo continuous glucose monitoring.

    Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 17894-17898

    • Kropff J.
    • et al.

    Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: a 180-day, prospective, multicenter, pivotal trial.

    Diabetes Care. 2016; 40: 63-68

    • Goud K.Y.
    • et al.

    Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward Parkinson management.

    ACS Sens. 2019; 4: 2196-2204

    • Gowers S.A.N.
    • et al.

    Development of a minimally invasive microneedle-based sensor for continuous monitoring of β-lactam antibiotic concentrations in vivo.

    Acs Sens. 2019; 4: 1072-1080

    • Swensen J.S.
    • et al.

    Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor.

    J. Am. Chem. Soc. 2009; 131: 4262-4266

    • Kurnik M.
    • et al.

    An electrochemical biosensor architecture based on protein folding supports direct real-time measurements in whole blood.

    Angew. Chem. Int. Ed. 2020; 59: 18442-18445

    • Ferguson B.S.
    • et al.

    Real-Time, aptamer-based tracking of circulating therapeutic agents in living animals.

    Sci. Transl. Med. 2013; 5: 213ra165

    • Arroyo-Currás N.
    • et al.

    Real-time measurement of small molecules directly in awake, ambulatory animals.

    Proc. Natl. Acad. Sci. U. S. A. 2017; 114: 645-650

    • Dauphin-Ducharme P.
    • et al.

    Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery.

    ACS Sens. 2019; 4: 2832-2837

    • Wu Y.
    • et al.

    Microneedle aptamer-based sensors for continuous, real-time therapeutic drug monitoring.

    Anal. Chem. 2022; 94: 8335-8345

    • Poudineh M.
    • et al.

    A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals.

    Nat. Biomed. Eng. 2021; 5: 53-63

    • Mohan A.M.V.
    • et al.

    Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays.

    Biosens. Bioelectron. 2017; 91: 574-579

    • Tehrani F.
    • et al.

    An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid.

    Nat. Biomed. Eng. 2022; 1–11

    • Ciui B.
    • et al.

    Wearable wireless tyrosinase bandage and microneedle sensors: toward melanoma screening.

    Adv. Healthc. Mater. 2018; 7: 1701264

    • Bao L.
    • et al.

    Anti-SARS-CoV-2 IgM/IgG antibodies detection using a patch sensor containing porous microneedles and a paper-based immunoassay.

    Sci. Rep. 2022; 12: 10693

    • Arakawa T.
    • et al.

    A wearable cellulose acetate-coated mouthguard biosensor for in vivo salivary glucose measurement.

    Anal. Chem. 2020; 92: 12201-12207

    • Tseng P.
    • et al.

    RF-trilayer sensors for tooth-mounted, wireless monitoring of the oral cavity and food consumption.

    Adv. Mater. 2018; 30: 1703257

    • Kim J.
    • et al.

    Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics.

    Nat. Commun. 2017; 8: 14997

    • Park J.
    • et al.

    Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays.

    Sci. Adv. 2018; 4eaap9841

    • Song H.
    • et al.

    Wireless non-invasive monitoring of cholesterol using a smart contact lens.

    Adv. Sci. 2022; 9: 2203597

    • Elsherif M.
    • et al.

    Wearable contact lens biosensors for continuous glucose monitoring using smartphones.

    ACS Nano. 2018; 12: 5452-5462

    • Ye Y.
    • et al.

    Smart contact lens with dual-sensing platform for monitoring intraocular pressure and matrix metalloproteinase-9.

    Adv. Sci. 2022; 92104738

    • Sempionatto J.R.
    • et al.

    Eyeglasses-based tear biosensing system: non-invasive detection of alcohol, vitamins and glucose.

    Biosens. Bioelectron. 2019; 137: 161-170

    • Bandodkar A.J.
    • et al.

    Tattoo-based noninvasive glucose monitoring: a proof-of-concept study.

    Anal. Chem. 2015; 87: 394-398

    • Gao W.
    • et al.

    Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.

    Nature. 2016; 529: 509-514

    • Sempionatto J.R.
    • et al.

    An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers.

    Nat. Biomed. Eng. 2021; 5: 737-748

    • Chen Y.
    • et al.

    Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring.

    Sci. Adv. 2017; 3e1701629

    • Kim Y.
    • et al.

    Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors.

    Science. 2022; 377: 859-864

    • Koh A.
    • et al.

    A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat.

    Sci. Transl. Med. 2016; 8366ra165

    • Bandodkar A.J.
    • et al.

    Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat.

    Sci. Adv. 2019; 5eaav3294

    • Kim S.
    • et al.

    Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities.

    Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 27906-27915

    • Lee H.-B.
    • et al.

    A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetectzzzzion of biomarker in sweat.

    Biosens. Bioelectron. 2020; 156: 112133

    • Cheng C.
    • et al.

    Battery-free, wireless, and flexible electrochemical patch for in situ analysis of sweat cortisol via near field communication.

    Biosens. Bioelectron. 2021; 172: 112782

    • Wang B.
    • et al.

    Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring.

    Sci. Adv. 2022; 8eabk0967

    • An J.E.
    • et al.

    Wearable cortisol aptasensor for simple and rapid real-time monitoring.

    ACS Sens. 2022; 7: 99-108

    • Wang Z.
    • et al.

    A flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications.

    Adv. Funct. Mater. 2021; 31: 2005958

    • Liu T.-L.
    • et al.

    Battery-free, tuning circuit-inspired wireless sensor systems for detection of multiple biomarkers in bodily fluids.

    Sci. Adv. 2022; 8eabo7049

    • Gonzalez-Navarro F.F.
    • et al.

    Glucose oxidase biosensor modeling and predictors optimization by machine learning methods.

    Sensors. 2016; 16: 1483

    • Yan W.
    • et al.

    Machine learning approach to enhance the performance of MNP-labeled lateral flow immunoassay.

    Nano-micro Lett. 2019; 11: 7

    • Massah J.
    • Vakilian K.A.

    An intelligent portable biosensor for fast and accurate nitrate determination using cyclic voltammetry.

    Biosyst. Eng. 2019; 177: 49-58

  • spot_img

    Latest Intelligence

    spot_img