Zephyrnet Logo

Biomimetic strategies and technologies for artificial tactile sensory systems

Date:

    • Abraira V.E.
    • Ginty D.D.

    The sensory neurons of touch.

    Neuron. 2013; 79: 618-639

    • Handler A.
    • Ginty D.D.

    The mechanosensory neurons of touch and their mechanisms of activation.

    Nat. Rev. Neurosci. 2021; 22: 521-537

    • Carpenter C.W.
    • et al.

    Human ability to discriminate surface chemistry by touch.

    Mater. Horiz. 2018; 5: 70-77

    • Wu Y.Z.
    • et al.

    A skin-inspired tactile sensor for smart prosthetics.

    Sci. Robot. 2018; 3eaat0429

    • Dahiya R.S.
    • et al.

    Tactile sensing—from humans to humanoids.

    IEEE Trans. Robot. 2010; 26: 1-20

    • Yang T.
    • et al.

    Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance.

    Mater. Sci. Eng. R Reports. 2017; 115: 1-37

    • Dahiya R.S.
    • et al.

    Directions toward effective utilization of tactile skin: a review.

    IEEE Sensors J. 2013; 13: 4121-4138

    • Cai Y.W.
    • et al.

    A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for e-skin.

    Nano Energy. 2021; 81105663

    • Ge C.Y.
    • et al.

    A capacitive and piezoresistive hybrid sensor for long-distance proximity and wide-range force detection in human-robot collaboration.

    Adv. Intell. Syst. 2022; 42100213

    • Trejos A.L.
    • et al.

    Robot-assisted tactile sensing for minimally invasive tumor localization.

    Int. J. Robot. Res. 2009; 28: 1118-1133

    • Kim Y.
    • et al.

    A bioinspired flexible organic artificial afferent nerve.

    Science. 2018; 360: 998-1003

    • Liu Z.
    • et al.

    Flexible and stretchable dual mode nanogenerator for rehabilitation monitoring and information interaction.

    J. Mater. Chem. B. 2020; 8: 3647-3654

    • Yang W.T.
    • et al.

    Multifunctional soft robotic finger based on a nanoscale flexible temperature-pressure tactile sensor for material recognition.

    ACS Appl. Mater. Interfaces. 2021; 13: 55756-55765

    • Hamaguchi S.
    • et al.

    Soft inductive tactile sensor using flow-channel enclosing liquid metal.

    IEEE Robot. Autom. Lett. 2020; 5: 4028-4034

    • Chou H.H.
    • et al.

    A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing.

    Nat. Commun. 2015; 6: 8011

    • Zhu M.L.
    • et al.

    Making use of nanoenergy from human – nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems.

    Nano Today. 2021; 36101016

    • Zhang Z.X.
    • et al.

    Highly transparent, self-healable, and adhesive organogels for bio-inspired intelligent ionic skins.

    ACS Appl. Mater. Interfaces. 2020; 12: 15657-15666

    • Massari L.
    • et al.

    Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin.

    Nat. Mach. Intell. 2022; 4: 425-435

    • Ouyang H.
    • et al.

    Symbiotic cardiac pacemaker.

    Nat. Commun. 2019; 10: 1821

    • Ge J.
    • et al.

    A bimodal soft electronic skin for tactile and touchless interaction in real time.

    Nat. Commun. 2019; 10: 4405

    • Wang Y.Q.
    • et al.

    Sequential in-situ route to synthesize novel composite hydrogels with excellent mechanical, conductive, and magnetic responsive properties.

    Mater. Des. 2020; 193108759

    • Jack R.E.
    • et al.

    Facial expressions of emotion are not culturally universal.

    Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 7241-7244

    • Jiang C.P.
    • et al.

    Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping.

    Adv. Mater. Technol. 2021; 62100285

    • Pang Y.K.
    • et al.

    Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots.

    Nano Energy. 2022; 96107137

    • Farajian M.
    • et al.

    Stretching the skin immediately enhances perceived stiffness and gradually enhances the predictive control of grip force.

    eLife. 2020; 9e52653

    • Yeo W.H.
    • et al.

    Multifunctional epidermal electronics printed directly onto the skin.

    Adv. Mater. 2013; 25: 2773-2778

    • Wang L.
    • et al.

    Structure and mechanogating of the mammalian tactile channel PIEZO2.

    Nature. 2019; 573: 225-229

    • Liu F.
    • et al.

    Neuro-inspired electronic skin for robots.

    Sci. Robot. 2022; 7eabl7344

    • Sharma N.
    • et al.

    The emergence of transcriptional identity in somatosensory neurons.

    Nature. 2020; 577: 392-398

    • Zheng Y.
    • et al.

    Deep sequencing of somatosensory neurons reveals molecular determinants of intrinsic physiological properties.

    Neuron. 2019; 103: 598-616.e7

    • Woo S.H.
    • et al.

    Piezo2 is required for Merkel-cell mechanotransduction.

    Nature. 2014; 509: 622-626

    • Talbot W.H.
    • et al.

    The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand.

    J. Neurophysiol. 1968; 31: 301-334

    • Neubarth N.L.
    • et al.

    Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception.

    Science. 2020; 368eabb2751

    • Johnson K.O.
    • et al.

    Tactile functions of mechanoreceptive afferents innervating the hand.

    J. Clin. Neurophysiol. 2000; 17: 539-558

    • Tan P.C.
    • et al.

    Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input.

    Adv. Mater. 2022; 34e2200793

    • Zhao S.
    • Ahn J.-H.

    Rational design of high-performance wearable tactile sensors utilizing bioinspired structures/functions, natural biopolymers, and biomimetic strategies.

    Mater. Sci. Eng. R Reports. 2022; 148100672

    • Lee G.
    • et al.

    Fingerpad-inspired multimodal electronic skin for material discrimination and texture recognition.

    Adv. Sci. (Weinh). 2021; 82002606

    • Park J.
    • et al.

    Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures.

    ACS Nano. 2014; 8: 12020-12029

    • Park J.
    • et al.

    Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins.

    NPG Asia Mater. 2018; 10: 163-176

    • Ji B.
    • et al.

    Bio-inspired hybrid dielectric for capacitive and triboelectric tactile sensors with high sensitivity and ultrawide linearity range.

    Adv. Mater. 2021; 33e2100859

    • Niu H.
    • et al.

    Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin.

    Adv. Mater. 2022; 34e2202622

    • Ha M.
    • et al.

    Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors.

    ACS Nano. 2018; 12: 3964-3974

    • Chun S.
    • et al.

    An artificial neural tactile sensing system.

    Nat. Electron. 2021; 4: 429-438

    • Chun S.
    • et al.

    Self-powered pressure- and vibration-sensitive tactile sensors for learning technique-based neural finger skin.

    Nano Lett. 2019; 19: 3305-3312

    • Yan Y.C.
    • et al.

    Soft magnetic skin for super-resolution tactile sensing with force self-decoupling.

    Sci. Robot. 2021; 6eabc8801

    • Ovchinnikov Y.A.

    Physico-chemical basis of ion transport through biological membranes: ionophores and ion channels.

    Eur. J. Biochem. 1979; 94: 321-336

  • Merkel cells are a touchy subject.

    Cell. 2014; 157: 531-533

    • Kenry
    • et al.

    Highly flexible graphene oxide nanosuspension liquid-based microfluidic tactile sensor.

    Small. 2016; 12: 1593-1604

    • Loo J.F.C.
    • et al.

    Integrated printed microfluidic biosensors.

    Trends Biotechnol. 2019; 37: 1104-1120

    • Jin M.L.
    • et al.

    An ultrasensitive, visco-poroelastic artificial mechanotransducer skin inspired by Piezo2 protein in mammalian Merkel cells.

    Adv. Mater. 2017; 291605973

    • Chun K.Y.
    • et al.

    A self-powered sensor mimicking slow- and fast-adapting cutaneous mechanoreceptors.

    Adv. Mater. 2018; 30e1706299

    • Chen Y.H.
    • et al.

    Piezotronic graphene artificial sensory synapse.

    Adv. Funct. Mater. 2019; 291900959

    • Park H.L.
    • et al.

    Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics.

    Adv. Mater. 2020; 32e1903558

    • Gkoupidenis P.
    • et al.

    Neuromorphic functions in PEDOT:PSS organic electrochemical transistors.

    Adv. Mater. 2015; 27: 7176-7180

    • Zhang X.M.
    • et al.

    An artificial spiking afferent nerve based on Mott memristors for neurorobotics.

    Nat. Commun. 2020; 11: 51

    • Nagi S.S.
    • et al.

    An ultrafast system for signaling mechanical pain in human skin.

    Sci. Adv. 2019; 5eaaw1297

    • Kwon S.M.
    • et al.

    Large-area pixelized optoelectronic neuromorphic devices with multispectral light-modulated bidirectional synaptic circuits.

    Adv. Mater. 2021; 33e2105017

    • Sundaram S.
    • et al.

    Learning the signatures of the human grasp using a scalable tactile glove.

    Nature. 2019; 569: 698-702

    • Chen C.
    • et al.

    A self-healing and ionic liquid affiliative polyurethane toward a piezo 2 protein inspired ionic skin.

    Adv. Funct. Mater. 2022; 322106341

    • Jiang Y.
    • et al.

    Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors.

    Adv. Mater. 2018; 30e1706589

    • Zhu M.
    • et al.

    Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems.

    Appl. Phys. Rev. 2020; 7031305

    • Wan C.J.
    • et al.

    An artificial sensory neuron with tactile perceptual learning.

    Adv. Mater. 2018; 30e1801291

    • Osborn L.E.
    • et al.

    Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain.

    Sci. Robot. 2018; 3aat3818

    • Chortos A.
    • et al.

    Pursuing prosthetic electronic skin.

    Nat. Mater. 2016; 15: 937-950

    • Bhattacharjee T.
    • et al.

    Inferring object properties with a tactile-sensing array given varying joint stiffness and velocity.

    Int. J. Humanoid Robot. 2018; 15: 1750024

    • Wen F.
    • et al.

    Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications.

    Adv. Sci. 2020; 72000261

    • Liu X.Y.
    • et al.

    Design of virtual guiding tasks with haptic feedback for assessing the wrist motor function of patients with upper motor neuron lesions.

    IEEE Trans. Neural Syst. Rehabil. Eng. 2019; 27: 984-994

    • Huo H.Q.
    • et al.

    Design of robot-assisted task involving visuomotor conflict for identification of proprioceptive acuity.

    IEEE Trans. Instrum. Meas. 2021; 704006310

  • Nature and functions of the papillary ridges of the digital skin.

    Anat. Rec. 1954; 119: 449-468

    • Gerstner W.

    Coding properties of spiking neurons: reverse and cross-correlations.

    Neural Netw. 2001; 14: 599-610

    • Hodgkin A.L.
    • Huxley A.F.

    A quantitative description of membrane current and its application to conduction and excitation in nerve.

    J. Physiol. 1952; 117: 500-544

    • Izhikevich E.M.

    Simple model of spiking neurons.

    IEEE Trans. Neural Netw. 2003; 14: 1569-1572

    • Yi W.
    • et al.

    Biological plausibility and stochasticity in scalable VO2 active memristor neurons.

    Nat. Commun. 2018; 9: 4661

    • Tseng A.C.
    • Sakata T.

    Direct electrochemical signaling in organic electrochemical transistors comprising high-conductivity double-network hydrogels.

    ACS Appl. Mater. Interfaces. 2022; 14: 24729-24740

    • Zhang S.
    • et al.

    The self-powered artificial synapse mechanotactile sensing system by integrating triboelectric plasma and gas-ionic-gated graphene transistor.

    Nano Energy. 2022; 91106660

    • Keser S.
    • Hayber S.E.

    Fiber optic tactile sensor for surface roughness recognition by machine learning algorithms.

    Sensors Actuators A Phys. 2021; 332113071

    • Yi Z.K.
    • et al.

    Tactile surface roughness categorization with multineuron spike train distance.

    IEEE Trans. Autom. Sci. Eng. 2021; 18: 1835-1845

    • Qu X.C.
    • et al.

    Artificial tactile perception smart finger for material identification based on triboelectric sensing.

    Sci. Adv. 2022; 8eabq2521

    • Sagdic K.
    • et al.

    Smart materials: rational design in biosystems via artificial intelligence.

    Trends Biotechnol. 2022; 40: 987-1003

    • Lee K.
    • et al.

    Artificially intelligent tactile ferroelectric skin.

    Adv. Sci. 2020; 72001662

    • Li F.
    • et al.

    A skin-inspired artificial mechanoreceptor for tactile enhancement and integration.

    ACS Nano. 2021; 15: 16422-16431

    • Taherkhani A.
    • et al.

    A review of learning in biologically plausible spiking neural networks.

    Neural Netw. 2020; 122: 253-272

    • Pickett M.D.
    • Williams R.S.

    Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices.

    Nanotechnology. 2012; 23215202

    • Chambers M.R.
    • et al.

    Structure and function of slowly adapting type II mechanoreceptor in hairy skin.

    Q. J. Exp. Physiol. Cognate Med. Sci. 1972; 57: 417-445

    • Nikolaev Y.A.
    • et al.

    Lamellar cells in Pacinian and Meissner corpuscles are touch sensors.

    Sci. Adv. 2020; 6eabe6393

    • Coste B.
    • et al.

    Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels.

    Science. 2010; 330: 55-60

    • Wu J.
    • et al.

    Touch, tension, and transduction – the function and regulation of piezo ion channels.

    Trends Biochem. Sci. 2017; 42: 57-71

    • Murthy S.E.
    • et al.

    The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice.

    Sci. Transl. Med. 2018; 10eaat9897

    • Woo S.H.
    • et al.

    Piezo2 is the principal mechanotransduction channel for proprioception.

    Nat. Neurosci. 2015; 18: 1756-1762

  • spot_img

    Latest Intelligence

    spot_img