Zephyrnet Logo

Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals

Date:

  • 1.

    Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660 (2013).

    Article  Google Scholar 

  • 2.

    Tian, B. et al. Roadmap on semiconductor–cell biointerfaces. Phys. Biol. 15, 031002 (2018).

    Article  CAS  Google Scholar 

  • 3.

    Atkinson, J. T. et al. Metalloprotein switches that display chemical-dependent electron transfer in cells. Nat. Chem. Biol. 15, 189–195 (2018).

    Article  CAS  Google Scholar 

  • 4.

    Bird, L. J. et al. Engineered living conductive biofilms as functional materials. MRS Commun. 9, 505–517 (2019).

    CAS  Article  Google Scholar 

  • 5.

    Shao, J. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med. 9, eaal2298 (2017).

    Article  Google Scholar 

  • 6.

    Mimee, M. et al. An ingestible bacterial–electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    CAS  Article  Google Scholar 

  • 7.

    Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    CAS  Article  Google Scholar 

  • 8.

    Tschirhart, T. et al. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat. Commun. 8, 14030 (2017).

    CAS  Article  Google Scholar 

  • 9.

    Bhokisham, N. et al. A redox-based electrogenetic CRISPR system to connect with and control biological information networks. Nat. Commun. 11, 2427 (2020).

    CAS  Article  Google Scholar 

  • 10.

    Sadat Mousavi, P. et al. A multiplexed, electrochemical interface for gene-circuit-based sensors. Nat. Chem. 12, 48–55 (2020).

    CAS  Article  Google Scholar 

  • 11.

    Liu, Y. et al. Connecting biology to electronics: molecular communication via redox modality. Adv. Healthc. Mater. 6, 1700789 (2017).

  • 12.

    Lee, H. et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3, e1601314 (2017).

    Article  CAS  Google Scholar 

  • 13.

    Wang, S., Payne, G. F. & Bentley, W. E. in Gene Expression and Control (ed. Uchiumi, F.) Ch. 9 (IntechOpen, 2019).

  • 14.

    Green, J. & Paget, M. S. Bacterial redox sensors. Nat. Rev. Microbiol. 2, 954–966 (2004).

    CAS  Article  Google Scholar 

  • 15.

    Hirose, A., Kouzuma, A. & Watanabe, K. Towards development of electrogenetics using electrochemically active bacteria. Biotechnol. Adv. 37, 107351 (2019).

    CAS  Article  Google Scholar 

  • 16.

    McCarty, N. S. & Ledesma-Amaro, R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol. 37, 181–197 (2019).

    CAS  Article  Google Scholar 

  • 17.

    Lindemann, S. R. et al. Engineering microbial consortia for controllable outputs. ISME J. 10, 2077–2084 (2016).

    CAS  Article  Google Scholar 

  • 18.

    Pomposiello, P. J. & Demple, B. Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol. 19, 109–114 (2001).

    CAS  Article  Google Scholar 

  • 19.

    Liu, Y. et al. Using a redox modality to connect synthetic biology to electronics: hydrogel-based chemo-electro signal transduction for molecular communication. Adv. Healthc. Mater. 6, 1600908 (2017).

  • 20.

    VanArsdale, E. et al. Redox-based synthetic biology enables electrochemical detection of the herbicides dicamba and Roundup via rewired Escherichia coli. ACS Sens. 4, 1180–1184 (2019).

    CAS  Article  Google Scholar 

  • 21.

    McKay, R. et al. A platform of genetically engineered bacteria as vehicles for localized delivery of therapeutics: toward applications for Crohn’s disease. Bioeng. Transl. Med. 3, 209–221 (2018).

    CAS  Article  Google Scholar 

  • 22.

    Zheng, M., Aslund, F. & Storz, G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721 (1998).

    CAS  Article  Google Scholar 

  • 23.

    Kim, S. O. et al. OxyR: a molecular code for redox-related signaling. Cell 109, 383–396 (2002).

    CAS  Article  Google Scholar 

  • 24.

    Aslund, F., Zheng, M., Beckwith, J. & Storz, G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl Acad. Sci. USA 96, 6161–6165 (1999).

    CAS  Article  Google Scholar 

  • 25.

    Demple, B. & Halbrook, J. Inducible repair of oxidative DNA damage in Escherichia coli. Nature 304, 466–468 (1983).

    CAS  Article  Google Scholar 

  • 26.

    Sultana, S. T. et al. Electrochemical scaffold generates localized, low concentration of hydrogen peroxide that inhibits bacterial pathogens and biofilms. Sci. Rep. 5, 14908 (2015).

    CAS  Article  Google Scholar 

  • 27.

    Rubens, J. R., Selvaggio, G. & Lu, T. K. Synthetic mixed-signal computation in living cells. Nat. Commun. 7, 11658 (2016).

    CAS  Article  Google Scholar 

  • 28.

    Virgile, C. et al. Engineering bacterial motility towards hydrogen-peroxide. PLoS ONE 13, e0196999 (2018).

    Article  CAS  Google Scholar 

  • 29.

    Hornstrom, D., Larsson, G., van Maris, A. J. A. & Gustavsson, M. Molecular optimization of autotransporter-based tyrosinase surface display. Biochim. Biophys. Acta Biomembr. 1861, 486–494 (2019).

    Article  CAS  Google Scholar 

  • 30.

    Terrell, J. L. et al. Nano-guided cell networks as conveyors of molecular communication. Nat. Commun. 6, 8500 (2015).

    CAS  Article  Google Scholar 

  • 31.

    Brown, S. Metal-recognition by repeating polypeptides. Nat. Biotechnol. 15, 269–272 (1997).

    CAS  Article  Google Scholar 

  • 32.

    Tamerler, C. et al. Materials specificity and directed assembly of a gold-binding peptide. Small 2, 1372–1378 (2006).

    CAS  Article  Google Scholar 

  • 33.

    Verde, A. V., Acres, J. M. & Maranas, J. K. Investigating the specificity of peptide adsorption on gold using molecular dynamics simulations. Biomacromolecules 10, 2118–2128 (2009).

    Article  CAS  Google Scholar 

  • 34.

    Medintz, I. L. et al. Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat. Mater. 9, 676–684 (2010).

    CAS  Article  Google Scholar 

  • 35.

    Tschirhart, T. et al. Electrochemical measurement of the beta-galactosidase reporter from live cells: a comparison to the Miller assay. ACS Synth. Biol. 5, 28–35 (2016).

    CAS  Article  Google Scholar 

  • 36.

    DeLisa, M. P., Wu, C. F., Wang, L., Valdes, J. J. & Bentley, W. E. DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J. Bacteriol. 183, 5239–5247 (2001).

    CAS  Article  Google Scholar 

  • 37.

    Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).

    CAS  Article  Google Scholar 

  • 38.

    Servinsky, M. D. et al. Directed assembly of a bacterial quorum. ISME J. 10, 158–169 (2016).

    CAS  Article  Google Scholar 

  • 39.

    Shang, W. et al. Selective assembly and functionalization of miniaturized redox capacitor inside microdevices for microbial toxin and mammalian cell cytotoxicity analyses. Lab Chip 18, 3578–3587 (2018).

    CAS  Article  Google Scholar 

  • 40.

    Pennacchio, F. A., Garma, L. D., Matino, L. & Santoro, F. Bioelectronics goes 3D: new trends in cell–chip interface engineering. J. Mater. Chem. B 6, 7096–7101 (2018).

    CAS  Article  Google Scholar 

  • 41.

    Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

  • 42.

    Kang, M. et al. Signal processing approach to probe chemical space for discriminating redox signatures. Biosens. Bioelectron. 112, 127–135 (2018).

    CAS  Article  Google Scholar 

  • 43.

    Hwang, I. Y. et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8, 15028 (2017).

    CAS  Article  Google Scholar 

  • 44.

    Sun, F., Zhang, W.-B., Mahdavi, A., Arnold, F. H. & Tirrell, D. A. Synthesis of bioactive protein hydrogels by genetically encoded SpyTag–SpyCatcher chemistry. Proc. Natl Acad. Sci. USA 111, 11269 (2014).

    CAS  Article  Google Scholar 

  • 45.

    French, K. E., Zhou, Z. & Terry, N. Horizontal ‘gene drives’ harness indigenous bacteria for bioremediation. Sci. Rep. 10, 15091 (2020).

    CAS  Article  Google Scholar 

  • 46.

    Jiang, Y., Dong, W., Xin, F. & Jiang, M. Designing synthetic microbial consortia for biofuel production. Trends Biotechnol. 38, 828–831 (2020).

    CAS  Article  Google Scholar 

  • 47.

    Jawed, K., Yazdani, S. S. & Koffas, M. A. G. Advances in the development and application of microbial consortia for metabolic engineering. Metab. Eng. Commun. 9, e00095 (2019).

    Article  Google Scholar 

  • 48.

    Alper, H. S. & Avalos, J. L. Metabolic pathway engineering. Synth. Syst. Biotechnol. 3, 1–2 (2018).

    Article  Google Scholar 

  • 49.

    Stephens, K., Pozo, M., Tsao, C. Y., Hauk, P. & Bentley, W. E. Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition. Nat. Commun. 10, 4129 (2019).

    Article  CAS  Google Scholar 

  • 50.

    Beardslee, L. A. et al. Ingestible sensors and sensing systems for minimally invasive diagnosis and monitoring: the next frontier in minimally invasive screening. ACS Sens. 5, 891–910 (2020).

    CAS  Article  Google Scholar 

  • 51.

    Windmiller, J. R. et al. Electrochemical sensing based on printable temporary transfer tattoos. Chem. Commun. 48, 6794–6796 (2012).

    CAS  Article  Google Scholar 

  • 52.

    Akyildiz, I. F., Pierobon, M., Balasubramaniam, S. & Koucheryavy, Y. The Internet of Bio-Nano Things. IEEE Commun. Mag. 53, 32–40 (2015).

    Article  Google Scholar 

  • 53.

    Hall, B. G., Acar, H., Nandipati, A. & Barlow, M. Growth rates made easy. Mol. Biol. Evol. 31, 232–238 (2014).

    CAS  Article  Google Scholar 

  • 54.

    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    CAS  Article  Google Scholar 

  • 55.

    Gawarzewski, I. et al. Crystal structure of the transport unit of the autotransporter adhesin involved in diffuse adherence from Escherichia coli. J. Struct. Biol. 187, 20–29 (2014).

    CAS  Article  Google Scholar 

  • 56.

    Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    CAS  Article  Google Scholar 

  • 57.

    Dong, H. et al. Living bacteria–nanoparticle hybrids mediated through surface-displayed peptides. Langmuir 34, 5837–5848 (2018).

    CAS  Article  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00878-4

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?