Zephyrnet Logo

A DNA assembly toolkit to unlock the CRISPR/Cas9 potential for metabolic engineering – Communications Biology

Date:

  • Nielsen, J., Larsson, C., van Maris, A. & Pronk, J. Metabolic engineering of yeast for production of fuels and chemicals. Curr. Opin. Biotechnol. 24, 398–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  • DiCarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz, C. M., Hussain, M. S., Blenner, M. & Wheeldon, I. Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth. Biol. 5, 356–359 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Raschmanová, H., Weninger, A., Glieder, A., Kovar, K. & Vogl, T. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects. Biotechnol. Adv. 36, 641–665 (2018).

    Article  PubMed  Google Scholar 

  • Tsai, C. S. et al. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR. Biotechnol. Bioeng. 112, 2406–2411 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Jessop-Fabre, M. M. et al. EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol. J. 11, 1110–1117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L. et al. Efficient CRISPR-Cas9 mediated multiplex genome editing in yeasts. Biotechnol. Biofuels 11, 277 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Q. et al. CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris. Micro. Cell Fact. 18, 44 (2019).

    Article  Google Scholar 

  • Holkenbrink, C. et al. EasyCloneYALI: CRISPR/Cas9-based synthetic toolbox for engineering of the yeast Yarrowia lipolytica. Biotechnol. J. 13, e1700543 (2018).

    Article  PubMed  Google Scholar 

  • Laughery, M. F. et al. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Yeast 32, 711–720 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Cai, P., Gao, J. & Zhou, Y. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications. Micro. Cell Fact. 18, 63 (2019).

    Article  Google Scholar 

  • Kretzschmar, A. et al. Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining. Curr. Genet 59, 63–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Babaei, M. et al. Engineering oleaginous yeast as the host for fermentative succinic acid production from glucose. Front Bioeng. Biotechnol. 27, 361 (2019).

    Article  Google Scholar 

  • Gao, C. et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnol. Biofuels 9, 179 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Milne, N. et al. Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives. Metab. Eng. 60, 25–36 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makanae, K., Kintaka, R., Makino, T., Kitano, H. & Moriya, H. Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Genome Res 23, 300–311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Adames, N. R., Gallegos, J. E. & Peccoud, J. Yeast genetic interaction screens in the age of CRISPR/Cas. Curr. Genet 65, 307–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Babaei, M. et al. Expansion of EasyClone-MarkerFree toolkit for Saccharomyces cerevisiae genome with new integration sites. FEMS Yeast Res. 21, foab027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, W., Gao, J., Zhai, X. & Zhou, Y. J. Screening neutral sites for metabolic engineering of methylotrophic yeast Ogataea polymorpha. Synth. Syst. Biotechnol. 6, 63–68 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, M. et al. CRISPR-mediated multigene integration enables Shikimate pathway refactoring for enhanced 2-phenylethanol biosynthesis in Kluyveromyces marxianus. Biotechnol. Biofuels 14, 3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady, J. R. et al. Identifying improved sites for heterologous gene integration using ATAC-seq. ACS Synth. Biol. 9, 2515–2524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, M. E., DeLoache, W. C., Cervantes, B. & Dueber, J. E. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 4, 975–986 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, N., Quail, M. M. F. & Hernday, A. D. An efficient, rapid, and recyclable system for crispr-mediated genome editing in Candida albicans. mSphere 2, e00149–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowers, G.-O. F. et al. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening. Nat. Commun. 11, 868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y. et al. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat. Commun. 10, 1053 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X. T. et al. tCRISPRi: tunable and reversible, one-step control of gene expression. Sci. Rep. 6, 39076 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCleary, W. R. Application of promoter swapping techniques to control expression of chromosomal genes. Appl Microbiol Biotechnol. 84, 641–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar, A. S., Varela, J. A., Juergens, H., Daran, J.-M. G. & Morrissey, J. P. Biological parts for Kluyveromyces marxianus synthetic biology. Front Bioeng. Biotechnol. 7, 97 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Weninger, A. et al. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers. J. Cell Biochem 119, 3183–3198 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Storici, F., Durham, C. L., Gordenin, D. A. & Resnick, M. A. Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc. Natl Acad. Sci. USA 100, 14994–14999 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, Y. K. & Ledesma-Amaro, R. What makes Yarrowia lipolytica well suited for industry? Trends Biotechnol. 41, 242–254 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Larroude, M., Trabelsi, H., Nicaud, J.-M. & Rossignol, T. A set of Yarrowia lipolytica CRISPR/Cas9 vectors for exploiting wild-type strain diversity. Biotechnol. Lett. 42, 773–785 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baisya, D., Ramesh, A., Schwartz, C., Lonardi, S. & Wheeldon, I. Genome-wide functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a guides in Yarrowia lipolytica. Nat. Commun. 13, 922 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz, C. & Wheeldon, I. CRISPR-Cas9-mediated genome editing and transcriptional control in Yarrowia lipolytica. Methods Mol. Biol. 1772, 327–345 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Celińska, E. et al. Golden Gate Assembly system dedicated to complex pathway manipulation in Yarrowia lipolytica. Micro. Biotechnol. 10, 450–455 (2017).

    Article  Google Scholar 

  • Larroude, M. et al. A modular Golden Gate toolkit for Yarrowia lipolytica synthetic biology. Micro. Biotechnol. 12, 1249–1259 (2019).

    Article  CAS  Google Scholar 

  • Li, Y. W. et al. YALIcloneNHEJ: An efficient modular cloning toolkit for NHEJ integration of multigene pathway and terpenoid production in Yarrowia lipolytica. Front Bioeng. Biotechnol. 9, 816980 (2021).

    Article  PubMed  Google Scholar 

  • Egermeier, M., Sauer, M. & Marx, H. Golden Gate-based metabolic engineering strategy for wild-type strains of Yarrowia lipolytica. FEMS Microbiol Lett. 366, fnz022 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Bredeweg, E. L. et al. A molecular genetic toolbox for Yarrowia lipolytica. Biotechnol. Biofuels 10, 2 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong, L., Engel, J., Jin, E., Holdridge, B. & Xu, P. YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metab. Eng. Commun. 5, 68–77 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • He, Q., Szczepańska, P., Yuzbashev, T. V., Lazar, Z. & Ledesma-Amaro, R. De novo production of resveratrol from glycerol by engineering different metabolic pathways in Yarrowia lipolytica. Metab. Eng. Commun. 11, e00146 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Juretzek, T. et al. Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18, 97–113 (2001).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1097-0061(20010130)18:23.0.CO;2-U” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1097-0061%2820010130%2918%3A2%3C97%3A%3AAID-YEA652%3E3.0.CO%3B2-U” aria-label=”Article reference 43″ data-doi=”10.1002/1097-0061(20010130)18:23.0.CO;2-U”>Article  CAS  PubMed  Google Scholar 

  • Albert, H., Dale, E. C., Lee, E. & Ow, D. W. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 7, 649–659 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Martínez, L. M., Martinez, A. & Gosset, G. Production of melanins with recombinant microorganisms. Front Bioeng. Biotechnol. 7, 285 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, B. et al. Fermentative production of Vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control. Nat. Commun. 11, 5155 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Tahar, I., Kus-Liśkiewicz, M., Lara, Y., Javaux, E. & Fickers, P. Characterization of a nontoxic pyomelanin pigment produced by the yeast Yarrowia lipolytica. Biotechnol. Prog. 36, e2912 (2020).

    PubMed  Google Scholar 

  • Luttik, M. A. H. et al. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab. Eng. 10, 141–153 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lütke-Eversloh, T. & Stephanopoulos, G. L-tyrosine production by deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75, 103–110 (2007).

    Article  PubMed  Google Scholar 

  • Chao, Y. P., Lai, Z. J., Chen, P. & Chern, J. T. Enhanced conversion rate of L-phenylalanine by coupling reactions of aminotransferases and phosphoenolpyruvate carboxykinase in Escherichia coli K-12. Biotechnol. Prog. 15, 453–458 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Romagnoli, G. et al. Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose. Yeast 32, 29–45 (2015).

    CAS  PubMed  Google Scholar 

  • Liu, Q. et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nat. Commun. 10, 4976 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, Y., Ma, J., Zhu, Y., Ding, X. & Xu, P. Engineering Yarrowia lipolytica as a chassis for de novo synthesis of five aromatic-derived natural products and chemicals. ACS Synth. Biol. 9, 2096–2106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larroude, M., Onésime, D., Rué, O., Nicaud, J. M. & Rossignol, T. A Yarrowia lipolytica strain engineered for pyomelanin production. Microorganisms 9, 838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmaler-Ripcke, J. et al. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ. Microbiol 75, 493–503 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Cañón, J. M. & Peñalva, M. A. Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue. J. Biol. Chem. 273, 329–337 (1998).

    Article  PubMed  Google Scholar 

  • Bassel, J., Hambright, P., Mortimer, R. & Bearden, A. J. Mutant of the yeast Saccharomycopsis lipolytica that accumulates and excretes protorphyrin IX. J. Bacteriol. 123, 118–122 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth, G. & Weber, H. Genetic studies on the yeast Saccharomycopsis lipolytica. Inactivation and mutagenesis. Z. Allg. Mikrobiol. 23, 147–157 (1983).

    CAS  PubMed  Google Scholar 

  • Tai, M. & Stephanopoulos, G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15, 1–9 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Larroude, M., Rossignol, T., Nicaud, J. M. & Ledesma-Amaro, R. Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnol. Adv. 36, 2150–2164 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, X. & Chen, S. Expanding toolbox for genes expression of Yarrowia lipolytica to include novel inducible, repressible, and hybrid promoters. ACS Synth. Biol. 9, 2208–2213 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y. et al. Hybrid promoter engineering strategies in Yarrowia lipolytica: isoamyl alcohol production as a test study. Biotechnol. Biofuels 14, 149 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Cañón, J. M. et al. Maleylacetoacetate isomerase (MAAI/GSTZ)-deficient mice reveal a glutathione-dependent nonenzymatic bypass in tyrosine catabolism. Mol. Cell Biol. 22, 4943–4951 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuzbasheva, E. Y. et al. The mitochondrial citrate carrier in Yarrowia lipolytica: Its identification, characterization and functional significance for the production of citric acid. Metab. Eng. 54, 264–274 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Laboratory, 1989). https://books.google.co.uk/books/about/Molecular_Cloning.html?id=8WViPwAACAAJ&redir_esc=y. Accessed March 23, 2023.

  • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Weber, E., Engler, C., Gruetzner, R., Werner, S. & Marillonnet, S. A modular cloning system for standardized assembly of multigene constructs. PLoS One 6, e16765 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 5978–5983 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, C. B. & Dahlquist, F. W. Exchange of chromosomal and plasmid alleles in Escherichia coli by selection for loss of a dominant antibiotic sensitivity marker. J. Bacteriol. 171, 2614–2618 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabbir Hussain, M., Gambill, L., Smith, S. & Blenner, M. A. Engineering promoter architecture in oleaginous yeast Yarrowia lipolytica. ACS Synth. Biol. 5, 213–223 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Borsenberger, V. et al. Multiple parameters drive the efficiency of CRISPR/Cas9-induced gene modifications in Yarrowia lipolytica. J. Mol. Biol. 430, 4293–4306 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Blazeck, J., Liu, L., Redden, H. & Alper, H. Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl. Environ. Microbiol 77, 7905–7914 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img