Zephyrnet Logo

A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries

Date:

  • Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    Article  CAS  Google Scholar 

  • Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    Article  CAS  Google Scholar 

  • Zou, Z. et al. Mobile ions in composite solids. Chem. Rev. 120, 4169–4221 (2020).

    Article  CAS  Google Scholar 

  • Tian, Y. et al. Promises and challenges of next-generation ‘beyond Li+’ batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021).

    Article  CAS  Google Scholar 

  • Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

    Article  CAS  Google Scholar 

  • Yao, Y. et al. Sodium ion batteries: toward high energy density all solid-state sodium batteries with excellent flexibility. Adv. Energy Mater. 10, 2070055 (2020).

    Article  CAS  Google Scholar 

  • Wu, J. et al. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 14, 12–36 (2021).

    Article  CAS  Google Scholar 

  • Xu, K. Electrolytes and interphases in Li+ batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  • Huang, Y.-F. et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 14, 6021–6029 (2021).

    Article  CAS  Google Scholar 

  • Lei, D. et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 10, 4244 (2019).

    Article  Google Scholar 

  • Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from ‘ceramic-in-polymer’ to ‘polymer-in-ceramic’. Nano Energy 46, 176–184 (2018).

    Article  CAS  Google Scholar 

  • Zheng, J., Wang, P., Liu, H. & Hu, Y.-Y. Interface-enabled ion conduction in Li10GeP2S12-poly(ethylene oxide) hybrid electrolytes. ACS Appl. Energy Mater. 2, 1452–1459 (2019).

    Article  CAS  Google Scholar 

  • Huang, Y. et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Commun. 12, 675 (2021).

    Article  CAS  Google Scholar 

  • Mi, J. et al. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 48, 375–383 (2022).

    Article  Google Scholar 

  • Liu, G. et al. Preventing dendrite growth by a soft piezoelectric material. ACS Mater. Lett. 1, 498–505 (2019).

    Article  CAS  Google Scholar 

  • Gao, T. et al. Piezoelectric mechanism and a compliant film to effectively suppress dendrite growth. ACS Appl. Mater. Interfaces 12, 51448–51458 (2020).

    Article  CAS  Google Scholar 

  • Liu, S. et al. Solid-state lithium metal batteries with extended cycling enabled by dynamic adaptive solid-state interfaces. Adv. Mater. 33, e2008084 (2021).

    Article  Google Scholar 

  • Zhang, X. et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017).

    Article  CAS  Google Scholar 

  • Fan, L.-Z., He, H. & Nan, C.-W. Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021).

    Article  CAS  Google Scholar 

  • Maier, J. Space charge regions in solid two phase systems and their conduction contribution — II Contact equilibrium at the interface of two ionic conductors and the related conductivity effect. J. Phys. Chem. Solids 89, 355–362 (1985).

    CAS  Google Scholar 

  • De Klerk, N. J. J. & Wagemaker, M. Space-charge layers in all-solid-state batteries; important or negligible? ACS Appl. Energy Mater. 1, 5609–5618 (2018).

    CAS  Google Scholar 

  • Jiang, B. et al. Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 48, 1194–1228 (2019).

    Article  CAS  Google Scholar 

  • Kalinin, S. V., Johnson, C. Y. & Bonnell, D. A. Domain polarity and temperature induced potential inversion on the BaTiO3 (100) surface. J. Appl. Phys. 91, 3816–3823 (2002).

    Article  CAS  Google Scholar 

  • Guo, Y. et al. Shaping Li deposits from wild dendrites to regular crystals via the ferroelectric effect. Nano Lett. 20, 7680–7687 (2020).

    Article  CAS  Google Scholar 

  • Wang, C. et al. High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells. Nat. Commun. 12, 6536 (2021).

    Article  Google Scholar 

  • Takada, K. et al. Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ion. 225, 594–597 (2012).

    Article  CAS  Google Scholar 

  • Wu, B. et al. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. J. Mater. Chem. A 4, 15266–15280 (2016).

    Article  CAS  Google Scholar 

  • Yada, C. et al. A high-throughput approach developing lithium-niobium-tantalum oxides as electrolyte/cathode interlayers for high-voltage all-solid-state lithium batteries. J. Electrochem. Soc. 162, A722–A726 (2015).

    Article  CAS  Google Scholar 

  • Xia, S. et al. Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO3 ceramic nanofiber films. ACS Nano 15, 3161–3170 (2021).

    Article  CAS  Google Scholar 

  • Jacob, M. M. E. et al. FTIR studies of DMF plasticized polyvinyledene fluoride based polymer electrolytes. Electrochim. Acta 45, 1701–1706 (2000).

    Article  CAS  Google Scholar 

  • Yang, K., Chen, L., Ma, J., He, Y.-B. & Kang, F. Progress and perspective of Li1+xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries. InfoMat. 3, 1195–1217 (2021).

  • Guo, W. et al. Mixed ion and electron‐conducting scaffolds for high‐rate lithium metal anodes. Adv. Mater. 9, 1900193 (2019).

    Google Scholar 

  • Li, S. et al. Manipulation of charge transfer in vertically aligned epitaxial ferroelectric KNbO3 nanowire array photoelectrodes. Nano Energy 35, 92–100 (2017).

    Article  CAS  Google Scholar 

  • Liu, Z. et al. Piezoelectric-effect-enhanced full-spectrum photoelectrocatalysis in p–n heterojunction. Adv. Funct. Mater. 29, 1807279 (2019).

    Article  CAS  Google Scholar 

  • Su, R. et al. Silver-modified nanosized ferroelectrics as a novel photocatalyst. Small 11, 202–207 (2015).

    Article  CAS  Google Scholar 

  • Zhu, P., Chen, Y. & Shi, J. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv. Mater. 32, 2001976 (2020).

    Article  CAS  Google Scholar 

  • Ding, J. F. et al. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60, 11442–11447 (2021).

    Article  CAS  Google Scholar 

  • Zheng, J., Tang, M. & Hu, Y.-Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016).

    Article  CAS  Google Scholar 

  • Zheng, J. & Hu, Y.-Y. New insights into the compositional dependence of Li+ transport in polymer–ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10, 4113–4120 (2018).

    Article  CAS  Google Scholar 

  • Yang, K. et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem. Int. Ed. 60, 24668–24675 (2021).

    Article  CAS  Google Scholar 

  • Yang, H. et al. Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries. J. Mater. Chem. A 8, 7261–7272 (2020).

    Article  CAS  Google Scholar 

  • Emery, J. et al. Polaronic effects on lithium motion in intercalated perovskite lithium lanthanum titanate observed by 7Li NMR and impedance spectroscopy. J. Phys. Condens. Matter 11, 10401–10417 (1999).

    Article  CAS  Google Scholar 

  • Duan, H. et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J. Am. Chem. Soc. 140, 82–85 (2018).

    Article  CAS  Google Scholar 

  • Du, G. et al. Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode. Adv. Energy Mater. 10, 1903351 (2020).

    Article  CAS  Google Scholar 

  • Liang, J. Y. et al. Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries. J. Am. Chem. Soc. 140, 6767–6770 (2018).

    Article  CAS  Google Scholar 

  • Zhou, W. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).

    Article  CAS  Google Scholar 

  • Yada, C. et al. Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv. Energy Mater. 4, 1301416 (2014).

    Article  Google Scholar 

  • Wang, L. et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11, 5889 (2020).

    Article  CAS  Google Scholar 

  • Xue, C., Zhang, X., Wang, S., Li, L. & Nan, C. W. Organic–organic composite electrolyte enables ultralong cycle life in solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 12, 24837–24844 (2020).

    Article  CAS  Google Scholar 

  • Zhang, X. et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, 1806082 (2019).

    Article  Google Scholar 

  • Chu, H. et al. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 10, 188 (2019).

    Article  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img