Zephyrnet Logo

X-ray-activated persistent luminescence nanomaterials for NIR-II imaging

Date:

  • 1.

    Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    CAS  Article  Google Scholar 

  • 2.

    Hu, Z. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 4, 259–271 (2019).

    Article  Google Scholar 

  • 3.

    Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    CAS  Article  Google Scholar 

  • 4.

    Tian, R. et al. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci. Adv. 5, eaaw0672 (2019).

    CAS  Article  Google Scholar 

  • 5.

    Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).

    CAS  Article  Google Scholar 

  • 6.

    Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    CAS  Article  Google Scholar 

  • 7.

    Lu, L. et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat. Commun. 11, 4192 (2020).

    Article  Google Scholar 

  • 8.

    Jaunich, M., Raje, S., Kim, K., Mitra, K. & Guo, Z. Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int. J. Heat. Mass. Trans. 51, 5511–5521 (2008).

    Article  Google Scholar 

  • 9.

    Zhan, Q. et al. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 5, 3744–3757 (2011).

    CAS  Article  Google Scholar 

  • 10.

    Brown, C. M., Reilly, A. & Cole, R. W. A quantitative measure of field illumination. J. Biomol. Tech 26, 37–44 (2015).

    Article  Google Scholar 

  • 11.

    Li, Y., Gecevicius, M. & Qiu, J. Long persistent phosphors—from fundamentals to applications. Chem. Soc. Rev. 45, 2090–2136 (2016).

    CAS  Article  Google Scholar 

  • 12.

    Hölsä, J. Persistent luminescence beats the afterglow: 400 years of persistent luminescence. Electrochem. Soc. Interface 18, 42–45 (2009).

    Article  Google Scholar 

  • 13.

    Matsuzawa, T., Aoki, Y., Takeuchi, N. & Murayama, Y. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+. J. Electrochem. Soc. 143, 2670–2673 (1996).

    CAS  Article  Google Scholar 

  • 14.

    le Masne de Chermont, Q. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266–9271 (2007).

    Article  CAS  Google Scholar 

  • 15.

    Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    CAS  Article  Google Scholar 

  • 16.

    Li, Z. et al. Direct aqueous-phase synthesis of sub-10 nm ‘luminous pearls’ with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 137, 5304–5307 (2015).

    CAS  Article  Google Scholar 

  • 17.

    Maldiney, T. et al. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 133, 11810–11815 (2011).

    CAS  Article  Google Scholar 

  • 18.

    Rajendran, V. et al. Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications. ACS Energy Lett. 3, 2679–2684 (2018).

    CAS  Article  Google Scholar 

  • 19.

    Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014).

    CAS  Article  Google Scholar 

  • 20.

    Ma, C. et al. The second near-infrared window persistent luminescence for anti-counterfeiting application. Cryst. Growth Des. 20, 1859–1867 (2020).

    CAS  Article  Google Scholar 

  • 21.

    Pan, Z., Lu, Y.-Y. & Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11, 58–63 (2012).

    CAS  Article  Google Scholar 

  • 22.

    Wu, S. et al. Recent advances of persistent luminescence nanoparticles in bioapplications. Nano-Micro Lett. 12, 2–26 (2020).

    Article  CAS  Google Scholar 

  • 23.

    Liu, J. et al. Imaging and therapeutic applications of persistent luminescence nanomaterials. Adv. Drug. Deliv. Rev. 138, 193–210 (2019).

    Article  CAS  Google Scholar 

  • 24.

    Zhang, H. et al. Tm3+-sensitized NIR-II fluorescent nanocrystals for in vivo information storage and decoding. Angew. Chem. Int. Ed. 58, 10153–10157 (2019).

    CAS  Article  Google Scholar 

  • 25.

    Xu, J. et al. 1.2 μm persistent luminescence of Ho3+ in LaAlO3 and LaGaO3 perovskites. J. Mater. Chem. C 6, 11374–11383 (2018).

    CAS  Article  Google Scholar 

  • 26.

    Wang, X., Chen, Y., Liu, F. & Pan, Z. Solar-blind ultraviolet-C persistent luminescence phosphors. Nat. Commun. 11, 2040 (2020).

    CAS  Article  Google Scholar 

  • 27.

    Abdukayum, A., Chen, J. T., Zhao, Q. & Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 135, 14125–14133 (2013).

    CAS  Article  Google Scholar 

  • 28.

    Chen, X., Song, J., Chen, X. & Yang, H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 48, 3073–3101 (2019).

    CAS  Article  Google Scholar 

  • 29.

    Yang, Y.-M. et al. X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions. Light. Sci. Appl. 7, 88 (2018).

    Article  CAS  Google Scholar 

  • 30.

    Cooper, D. R., Capobianco, J. A. & Seuntjens, J. Radioluminescence studies of colloidal oleate-capped β-Na(Gd,Lu)F4:Ln3+ nanoparticles (Ln = Ce, Eu, Tb). Nanoscale 10, 7821–7832 (2018).

    CAS  Article  Google Scholar 

  • 31.

    Mandl, G. A. et al. On a local (de-)trapping model for highly doped Pr3+ radioluminescent and persistent luminescent nanoparticles. Nanoscale 12, 20759–20766 (2020).

    CAS  Article  Google Scholar 

  • 32.

    Ou, X. et al. High-resolution X-ray luminescence extension imaging. Nature 590, 410–415 (2021).

    CAS  Article  Google Scholar 

  • 33.

    Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    CAS  Article  Google Scholar 

  • 34.

    Wang, F. & Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009).

    CAS  Article  Google Scholar 

  • 35.

    Hasse, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    Article  CAS  Google Scholar 

  • 36.

    Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 8, 32–36 (2014).

    CAS  Article  Google Scholar 

  • 37.

    Urbach, F. Zur Lumineszenz der Alkalihalogenide: II. Messungmethoden 139, 363–372 (1930).

    Google Scholar 

  • 38.

    Rezende, M. Vd. S., Montes, P. J. R., Andrade, A. B., Macedo, Z. S. & Valerio, M. E. G. Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor. Phys. Chem. Chem. Phys. 18, 17646–17654 (2016).

    CAS  Article  Google Scholar 

  • 39.

    Shi, H. F. & An, Z. F. Ultraviolet afterglow. Nat. Photon. 13, 74–75 (2019).

    CAS  Article  Google Scholar 

  • 40.

    Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    CAS  Article  Google Scholar 

  • 41.

    Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    CAS  Article  Google Scholar 

  • 42.

    Jiang, Z., Liu, Z., Li, Y. & Duan, W. Scaling universality between band gap and exciton binding energy of two-dimensional semiconductors. Phys. Rev. Lett. 118, 266401 (2017).

    Article  Google Scholar 

  • 43.

    McClure, D. S. & Pedrini, C. Excitons trapped at impurity centers in highly ionic crystals. Phys. Rev. B 32, 8465–8468 (1985).

    CAS  Article  Google Scholar 

  • 44.

    Schipper, W. J. & Blasse, G. On the recombination mechanism in X-ray storage phosphors based on lanthanum fluoride. J. Lumin. 59, 377–383 (1994).

    CAS  Article  Google Scholar 

  • 45.

    Huang, B., Dong, H., Wong, K.-L., Sun, L.-D. & Yan, C.-H. Fundamental view of electronic structures of β-NaYF4, β-NaGdF4, and β-NaLuF4. J. Phys. Chem. C 120, 18858–18870 (2016).

    CAS  Article  Google Scholar 

  • 46.

    Andersen, P., Andersen, L. M. & Iversen, L. H. Iatrogenic ureteral injury in colorectal cancer surgery: a nationwide study comparing laparoscopic and open approaches. Surg. Endosc. 29, 1406–1412 (2015).

    Article  Google Scholar 

  • 47.

    Minas, V., Gul, N., Aust, T., Doyle, M. & Rowlands, D. Urinary tract injuries in laparoscopic gynaecological surgery; prevention, recognition and management. Obstet. Gynaecol. 16, 19–28 (2014).

    Google Scholar 

  • 48.

    de Valk, K. S. et al. A zwitterionic near-infrared fluorophore for real-time ureter identification during laparoscopic abdominopelvic surgery. Nat. Commun. 10, 3118 (2019).

    Article  CAS  Google Scholar 

  • 49.

    Smith, A. M., Mancini, M. C. & Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    CAS  Article  Google Scholar 

  • 50.

    Gnach, A., Lipinski, T., Bednarkiewicz, A., Rybka, J. & Capobianco, J. A. Upconverting nanoparticles: assessing the toxicity. Chem. Soc. Rev. 44, 1561–1584 (2015).

    CAS  Article  Google Scholar 

  • 51.

    Liu, Q. et al. 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 5, 3146–3157 (2011).

    CAS  Article  Google Scholar 

  • 52.

    Xiudong, Shi et al. Hemoglobin-mediated biomimetic synthesis of paramagnetic O2-evolving theranostic nanoprobes for MR imaging-guided enhanced photodynamic therapy of tumor. Theranostics 10, 11607–11621 (2020).

    Article  CAS  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00922-3

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?