Connect with us

NEWATLAS

VW’s T7 Multivan to be its most versatile, modular van and camper yet

Avatar

Published

on

Volkswagen wouldn’t write the next chapter in the story of the most iconic van of all time without first penning out a slow-building teaser campaign. It’s started that campaign by previewing the highlights of the new T7 Multivan. The Swiss Army knife-like van will get even more versatile in its fifth generation, adapting to whatever its owners are doing with an extended floor rail system, more flexible individual seating array, all-new multifunctional table design and more digitization. The changes promise to enhance not only the Multivan MPV but full camper vans based on the model, whether from VW or the legion of third-party converters around the world.

The Multivan debuted as a new T3 model in 1985, serving as a veritable multitool for family, business, sports, travel and adventure uses. It was both an everyday MPV and light camper, carrying a third-row bench that could fold down into a bed, along with a fold-out table. In the decades that followed, it evolved with floor rail systems, swivel seats, various multi-position table designs, and the latest in safety and drive technologies.

Younger than the Volkswagen Transporter itself, the Multivan launched on the third-generation T3
Younger than the Volkswagen Transporter itself, the Multivan launched on the third-generation T3

VW Commercial Vehicles

Priding itself on improving the variable interior with each successive generation, Volkswagen is preparing a few notable changes for the fifth-generation Multivan. It will rid the van of its three-seat rear bench and instead offer up to five individual rear seats to create various seating arrangements up to a full seven-seater.

The move seems clearly influenced by the fact that Volkswagen’s self-proclaimed “Swiss Army knife on wheels” has been surpassed in versatility by MPVs and light camper designs like the Citroën SpaceTourer, SpaceTourer-based Pössl Vanster and Ford Flexibus, precisely because of their extra-flexible rear seating. The overhead of the Vanster below shows how the light camper’s seats can be arranged in a multitude of configurations around the exact needs of the trip of the day. The full-width bench of the outgoing Multivan simply can’t compete, but the new individual seating will put the Multivan on equal footing … perhaps even higher footing since Citroën/Pössl vans use a mix of two-seat benches and single seats.

From eight seats, to camper van, to empty cargo van ... the layouts of the SpaceTourer Vanster
From eight seats, to camper van, to empty cargo van … the layouts of the SpaceTourer Vanster

Pössl

“You can easily take seats out to get your sports equipment, mountain bike and/or surfboard into this generously proportioned space,” explains Albert Kirzinger, design chief at VW Commercial Vehicles. “With these seats, everything is possible in the new Multivan.”

Volkswagen also says the interior benefits from a lighter second- and third-row seat design that makes removal and rearranging easier than ever. The floor rail system has been extended to support seating variability, running from the rear of the load floor through to the second-row seats. A new multi-position table will work with the extended rail system for added flexibility.

Volkswagen teases a large Multivan glass roof and a more versatile interior with full floor rail system and only individual seats
Volkswagen teases a large Multivan glass roof and a more versatile interior with full floor rail system and only individual seats

VW Commercial Vehicles

The enhancements aren’t dedicated solely to the rear cabin, as Volkswagen revealed today. The new Multivan transitions over to a shift-by-wire system that shrinks the gear shift knob down to a dashboard switch dashboard between the steering wheel and 10-in infotainment display. The switch sends the shift signal to the standard DSG gearbox without the need for a mechanical connection.

Along with the shift switch on the left, Volkswagen previews a 10-in infotainment screen with available 360-degree vehicle monitoring
Along with the shift switch on the left, Volkswagen previews a 10-in infotainment screen with available 360-degree vehicle monitoring

VW Commercial Vehicles

The digital shifting design frees up the center space between driver and front passenger, which VW further opens by swapping the parking brake lever out for a push-button brake. The newly cleared center provides easier transition between the front seats and rear cabin, something that can be particularly valuable when the Multivan, or a conversion thereof, is used as a camper. Volkswagen also mentions that the multifunctional rear table will be able to slide into the space, providing a usable surface for driver and front passenger. VW remains coy about additional table details, setting up another teaser — or round of teasers.

The latest teaser picture at the top of the article, combined with the pic below, provides some insight into the new Multivan’s face. The design benefits mightily from Volkswagen’s ID electric styling, gaining a sweeping full-width lighting signature and losing the huge double-stack grille of the T6.1 in favor of a smoother, cleaner look. The top picture also shows the classic two-tone paint living on.

Like Volkswagen's ID.4 and Taos, the new T7 Multivan has a thin, horizontal lighting signature connecting the headlamps with the center logo
Like Volkswagen’s ID.4 and Taos, the new T7 Multivan has a thin, horizontal lighting signature connecting the headlamps with the center logo

VW Commercial Vehicles

Volkswagen plans to launch the T7 Multivan this year, so the world should get a complete look in the coming months. Before that, though, we’ll have to get through a rather slow-going teaser campaign.

Source: Volkswagen

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://newatlas.com/automotive/vw-versatile-t7-multivan-teaser/

NEWATLAS

“Recent” volcanic eruption on Mars boosts subsurface life hypothesis

Avatar

Published

on

While there’s evidence of volcanic activity in Mars’ ancient past, it was presumed to have been quiet for millions of years. But now, orbiters have spotted a large volcanic deposit that appears to be relatively fresh – only about 53,000 years old – which may lend weight to the idea that the Red Planet was recently, or still is, habitable for subsurface microbes.

Mars still bears the scars of its volcanic past. Its surface is dotted with what may be the remains of gigantic, extinct supervolcanoes, and evidence even suggests one of these erupted non-stop for 2 billion years. Generally though, it’s thought that Martian volcanism mostly occurred between about 3 and 4 billion years ago, and had all but died down in the last few million years – the odd, very faint marsquake notwithstanding.

But now, scientists have discovered a scar that appears to be far more recent. Spotted from orbit in a region called the Elysium Planitia, the feature is a dark deposit that measures 8 miles (12.9 km) wide, and surrounds a large fissure 20 miles (32.2 km) long. The team says it doesn’t look like anything else seen in the area, or anywhere else on Mars.

Judging by its layers relative to its surroundings, as well as the number of small craters within it, the team calculated its age to be around 53,000 years. It doesn’t seem to be the result of common lava flow eruptions, but a more explosive event driven by expanding gases, called a pyroclastic eruption.

“This feature overlies the surrounding lava flows and appears to be a relatively fresh and thin deposit of ash and rock, representing a different style of eruption than previously identified pyroclastic features,” says David Horvath, lead author of the study. “This eruption could have spewed ash as high as 6 miles (9.7 km) into Mars’ atmosphere. It is possible that these sorts of deposits were more common but have been eroded or buried.”

Interestingly, this potentially youngest volcanic eruption happens to be located just a few miles from a large impact crater that may also be the youngest on Mars. The team says that it’s possible that the two are connected.

“The ages of the eruption and the impact are indistinguishable, which raises the possibility, however speculative, that the impact actually triggered the volcanic eruption,” says Pranabendu Moitra, co-author of the study.

The white square indicates where the "recent" eruption took place. NASA's InSight lander lies about 1,000 miles (1,600 km) away, while the large ancient volcano Elysium Mons towers over the plains to the northeast
The white square indicates where the “recent” eruption took place. NASA’s InSight lander lies about 1,000 miles (1,600 km) away, while the large ancient volcano Elysium Mons towers over the plains to the northeast

MOLA Science Team

The implications of such a recent volcanic eruption run deeper than just seismology. Volcanic activity could potentially support subsurface microbial life, by creating warmth and cycling nutrients through rocks. A recent study from Brown University found that Mars may have these favorable conditions today – and the new research lends weight to the idea.

“The interaction of ascending magma and the icy substrate of this region could have provided favorable conditions for microbial life fairly recently and raises the possibility of extant life in this region,” says Horvath.

The research was published in the journal Icarus.

Source: University of Arizona

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://newatlas.com/space/recent-volcanic-eruption-mars-subsurface-life/

Continue Reading

NEWATLAS

Glowing probe lights up the signs of cardiovascular trouble

Avatar

Published

on

The accumulation of plaque inside the arteries can be an insidious condition with grave consequences that include blood clots and strokes, but luckily it does give off some tell-tale signs. Researchers in the UK have developed a new type of glowing probe that focuses on one of them, increasing its fluorescence in the presence of a key enzyme and possibly acting as an early warning sign for cardiovascular disease.

Known as atherosclerosis, the build-up of arterial plaque is a key driver of heart disease and stroke, and is in turn a leading cause of death in the Western world. One of the ways the condition can endanger human health is when the plaque actually breaks away from the artery walls, events known as intraplaque haemorrhages (IPHs), which can then restrict blood flow and lead to chronic disease or stroke.

The new probe, developed by scientists at Imperial College London, takes aim at an enzyme known as heme oxygenase-1 (HO-1), which is produced in large amounts as IPHs take hold. The probe consists of two compartments that transfer fluorescent molecules between one another – one “donor” component and an “acceptor” component.

But as the probe comes into contact with HO-1, the enzyme breaks a bond connecting these two compartments, and causes a build up of the fluorescent molecules in the donor compartment. This means that the probe glows up to six times more brightly in the presence of HO-1, as was demonstrated in lab tests using modified E. Coli cells, with the change in fluorescence able to be detected using spectroscopy.

“Current methods to detect IPH rely on hospital-based imaging techniques that are both time-consuming and expensive,” says study author Professor James Leiper. “The current technology aims to produce a fast and sensitive diagnostic test that can be used at the time that a patient first presents with symptoms to allow early detection of IPH. Use of such a test would allow for more rapid treatment and improved outcomes for patients suffering from IPH.”

The early proof-of-concept is promising, but such a clinical test is still a ways off. The scientists will next carry out further studies involving mammal and human cells, with hopes that the probe could one day also enable long-term tracking of cardiovascular health.

“The probes could also provide real-time analysis of the underpinning biological processes involved in vascular disease, providing new insights and potentially new ways to track the progress of chronic disease,” says study co-lead Dr Joe Boyle.

The research was published in the Journal of the American Chemical Society.

Source: Imperial College London

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://newatlas.com/medical/glowing-probe-cardiovascular-trouble/

Continue Reading

NEWATLAS

Organic, metal-free battery breaks down in acid for recycling

Avatar

Published

on

One of the problems with our ongoing shift toward renewable energy relates to the way we store it, with today’s metal-laden lithium batteries currently serving us well but carrying sustainability issues of their own. Scientists are investigating alternative, more eco-friendly chemistries, and a team at Texas A&M University has just put forward an interesting candidate, demonstrating a metal-free battery that can be placed in acidic solutions to degrade on demand.

The increasing demand for electronic devices and electric vehicles means an increasing demand for lithium-ion batteries, which rely on heavy metals that aren’t so easily sourced. Cobalt, for example, is plagued with ethical issues around mining practices involving child labor in Africa, as well as environmental degradation and the pollution of water supplies. Furthermore, it is difficult to separate and recover these materials at the end of the battery’s life.

“The big problem with lithium-ion batteries right now is that they’re not recycled to the degree that we are going to need for the future electrified transportation economy,” says Dr. Jodie Lutkenhaus, study author. “The rate of recycling lithium-ion batteries right now is in the single digits. There is valuable material in the lithium-ion battery, but it’s very difficult and energy intensive to recover.”

These problems have driven researchers like Lutkenhaus to investigate metal-free battery architectures, with a saltwater prototype battery developed by IBM one notable example. The Texas A&M University scientists instead used electrochemically active chains of amino acids, called redox active polypeptides, to build the battery’s two electrodes, which pass energy back and forth as the device is charged and discharged.

In testing, the organic battery ticked a couple of important boxes. First and foremost, these electrodes performed their role as active materials during operation, remaining stable throughout. And afterwards, the components were able to be degraded by subjecting them to acidic conditions, which left amino acids and other benign degradation products as a result, to be re-used or left to dissolve harmlessly in the environment.

“By moving away from lithium and working with these polypeptides, which are components of proteins, it really takes us into this realm of not only avoiding the need for mining precious metals, but opening opportunities to power wearable or implantable electronic devices and also to easily recycle the new batteries,” says study author Dr. Karen Wooley. “They [polypeptide batteries] are degradable, they are recyclable, they are non-toxic and they are safer across the board.”

While early days for the research, the scientists see it as a promising first step in the development of sustainable batteries, and they’re now looking to improve the design further with the help of machine learning.

The research was published in the journal Nature.

Source: Texas A&M University

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://newatlas.com/energy/organic-metal-free-battery-degraded-acid-recycling/

Continue Reading

NEWATLAS

IBM’s new 2-nm chips have transistors smaller than a strand of DNA

Avatar

Published

on

In a shining example of the inexorable march of technology, IBM has unveiled new semiconductor chips with the smallest transistors ever made. The new 2-nanometer (nm) tech allows the company to cram a staggering 50 billion transistors onto a chip the size of a fingernail.

The current industry standard is chips with 7-nm transistors, with some high-end consumer devices, such as Apple’s M1 processors, beginning to make the move to 5 nm. And experimental chips have shrunk as small as 2.5 nm.

IBM’s new chips pip them all, with transistors now measuring just 2 nm wide – for reference, that’s narrower than a strand of human DNA. That, of course, means the tiny transistors can be squeezed onto a chip far more densely than ever before, boosting the device’s processing power and energy efficiency in the process. The company claims that, when compared to current 7-nm chips, the new 2-nm chips can reach 45 percent higher performance or 75 percent lower energy use.

In practical terms, IBM says the tech could give a performance boost to everything from consumer electronics to AI object recognition to the reaction times of autonomous vehicles. Or, its energy savings could reduce the sizeable carbon footprint of data centers, or make for smartphone batteries that last four days on a single charge.

A close-up of a 2-nm silicon wafer containing hundreds of individual chips
A close-up of a 2-nm silicon wafer containing hundreds of individual chips

IBM

Transistors are often used to define technological progress – Moore’s law states that the number of transistors on a chip will double every two years or so. While it’s held more or less true since it was proposed in the 1960s, that rate has slowed down somewhat in recent years.

It’s been nearly four years since IBM revealed its 5-nm chips with 30 billion transistors – if Moore’s law was followed to a T, we’re two years late and 10 billion transistors short. In fact, IBM is only now doubling the transistors on its first 7-nm chips unveiled in 2015.

A scanning electron microscope image of individual transistors on IBM's new chip, each measuring 2 nanometers wide – narrower than a strand of human DNA
A scanning electron microscope image of individual transistors on IBM’s new chip, each measuring 2 nanometers wide – narrower than a strand of human DNA

IBM

Still, we shouldn’t diminish the new development – 2 nm is quite the feat of engineering. As recently as 2019, engineers expressed concerns that technology wouldn’t allow much progress to be made smaller than 3 nm. Research by many companies over the past few years have put those concerns to rest.

It’s likely that we won’t see these 2-nm chips in consumer electronics until 2023 at the earliest, so for now go enjoy the benefits of the still-impressive 5-nm chips.

IBM discusses the new tech breakthrough in the video below.

IBM Unveils World’s First 2 Nanometer Chip Technology

Source: IBM

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://newatlas.com/computers/ibm-2-nm-chips-transistors/

Continue Reading
Aviation4 days ago

American Airlines Passenger Arrested After Alleged Crew Attack

Blockchain4 days ago

The Reason for Ethereum’s Recent Rally to ATH According to Changpeng Zhao

Blockchain3 days ago

Chiliz Price Prediction 2021-2025: $1.76 By the End of 2025

Blockchain4 days ago

Mining Bitcoin: How to Mine Bitcoin

Blockchain4 days ago

Mining Bitcoin: How to Mine Bitcoin

PR Newswire3 days ago

Teamsters Lead Historic Defeat of CEO Pay at Marathon Petroleum

Fintech5 days ago

Talking Fintech: Customer Experience and the Productivity Revolution

Blockchain4 days ago

Mining Bitcoin: How to Mine Bitcoin

Cyber Security5 days ago

Alaska Court System Temporarily Disconnected the Internet After a Cybersecurity Threat

Blockchain4 days ago

Amid XRP lawsuit, Ripple appoints former US Treasurer to its board, and names new CFO

AR/VR2 days ago

Apple is giving a laser company that builds some of its AR tech $410 million

Esports4 days ago

TFT 11.9 B-patch nerfs Mordekaiser and LeBlanc

Cyber Security5 days ago

Incident Detection and Response Basics Greatly Matter

Blockchain3 days ago

Galaxy Digital Set To Buy BitGo for $1.2 Billion

AI5 days ago

Education lender Climb Credit taps Zest AI for credit underwriting

Esports4 days ago

When does Destiny 2 Season of the Splicer start and end?

Blockchain4 days ago

‘DeFi may lead to a paradigm shift’ says Federal Reserve Bank paper

Automotive3 days ago

Brembo Debuts Light-Up LED Brake Calipers

Payments2 days ago

G20 TechSprint Initiative invites firm to tackle green finance

Blockchain17 hours ago

Launch of Crypto Trading Team by Goldman Sachs

Trending