Zephyrnet Logo

Regulation of quantum spin conversions in a single molecular radical – Nature Nanotechnology

Date:

  • Dery, H., Dalal, P., Cywinski, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Baek, S. H. C. et al. Complementary logic operation based on electric-field controlled spin-orbit torques. Nat. Electron. 1, 398–403 (2018).

    Article 

    Google Scholar
     

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019).

    Article 

    Google Scholar
     

  • Berciu, M., Rappoport, T. G. & Janko, B. Manipulating spin and charge in magnetic semiconductors using superconducting vortices. Nature 435, 71–75 (2005).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Bracher, T. et al. Detection of short-waved spin waves in individual microscopic spin-wave waveguides using the inverse spin hall effect. Nano Lett. 17, 7234–7241 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tong, M. et al. Light-driven spintronic heterostructures for coded terahertz emission. ACS Nano 16, 8294–8300 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simao, C. et al. A robust molecular platform for non-volatile memory devices with optical and magnetic responses. Nat. Chem. 3, 359–364 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warner, M. et al. Potential for spin-based information processing in a thin-film molecular semiconductor. Nature 503, 504–508 (2013).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lombardi, F. et al. Quantum units from the topological engineering of molecular graphenoids. Science 366, 1107–1110 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Abe, M. Diradicals. Chem. Rev. 113, 7011–7088 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Z. et al. Pro-aromatic and anti-aromatic pi-conjugated molecules: an irresistible wish to be diradicals. Chem. Soc. Rev. 44, 6578–6596 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naghibi, S. et al. Redox-addressable single-molecule junctions incorporating a persistent organic radical. Angew. Chem. Int. Ed. 61, e202116985 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Bejarano, F. et al. Robust organic radical molecular junctions using acetylene terminated groups for C–Au bond formation. J. Am. Chem. Soc. 140, 1691–1696 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions. Nat. Chem. 14, 59–65 (2021).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Shen, Y. et al. Normal & reversed spin mobility in a diradical by electron-vibration coupling. Nat. Commun. 12, 6262 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Patera, L. L. et al. Resolving the unpaired-electron orbital distribution in a stable organic radical by Kondo resonance mapping. Angew. Chem. Int. Ed. 58, 11063–11067 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Baum, T. Y., Andez, S. F., Pena, D. G. & van der Zant, H. S. J. Magnetic fingerprints in an all-organic radical molecular break junction. Nano Lett. 22, 8086–8092 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hayakawa, R. et al. Large magnetoresistance in single-radical molecular junctions. Nano Lett. 16, 4960–4967 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Mitra, G. et al. Interplay between magnetoresistance and Kondo resonance in radical single-molecule junctions. Nano Lett. 22, 5773–5779 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Pyurbeeva, E. et al. Controlling the entropy of a single-molecule junction. Nano Lett. 21, 9715–9719 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Pyurbeeva, E. & Mol, J. A. A thermodynamic approach to measuring entropy in a few-electron nanodevice. Entropy 23, 640 (2021).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Bajaj, A., Khurana, R. & Ali, M. E. Quantum interference and spin filtering effects in photo-responsive single molecule devices. J. Mater. Chem. C 9, 11242–11251 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, Y. et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Fock, J. et al. Manipulation of organic polyradicals in a single-molecule transistor. Phys. Rev. B 86, 235403 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Li, L. et al. Highly conducting single-molecule topological insulators based on mono- and di-radical cations. Nat. Chem. 14, 1061–1067 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Evolution of the electronic structure in open-shell donor–acceptor organic semiconductors. Nat. Commun. 12, 5889 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Li, Y., Li, L., Wu, Y. & Li, Y. A review on the origin of synthetic metal radical: singlet open-shell radical ground state? J. Phys. Chem. C 121, 8579–8588 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z. et al. Aggregation-induced radical of donor–acceptor organic semiconductors. J. Phys. Chem. Lett. 12, 9783–9790 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z., Li, Y. & Huang, F. Persistent and stable organic radicals: design, synthesis, and applications. Chem 7, 288–332 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lörtscher, E. Wiring molecules into circuits. Nat. Nanotechnol. 8, 381–384 (2013).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Xin, N. et al. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1, 211–230 (2019).

    Article 

    Google Scholar
     

  • Jia, C. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Meng, L. et al. Dual-gated single-molecule field-effect transistors beyond Moore’s law. Nat. Commun. 13, 1410 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Yang, C. et al. Complete deciphering of the dynamic stereostructures of a single aggregation-induced emission molecule. Matter 5, 1224–1234 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xin, N. et al. Stereoelectronic effect-induced conductance switching in aromatic chain single-molecule junctions. Nano Lett. 17, 856–861 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Yang, C. et al. Unveiling the full reaction path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 16, 1214–1223 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Yang, C. et al. Electric field-catalyzed single-molecule Diels–Alder reaction dynamics. Sci. Adv. 7, eabf0689 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. Int. Ed. 51, 12228–12232 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C., Yang, C., Guo, Y., Feng, J. & Guo, X. Graphene–molecule–graphene single-molecule junctions to detect electronic reactions at the molecular scale. Nat. Protoc. 18, 1958–1978 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mol, J. A. et al. Graphene–porphyrin single-molecule transistors. Nanoscale 7, 13181–13185 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gehring, P. et al. Field-effect control of graphene–fullerene thermoelectric nanodevices. Nano Lett. 17, 7055–7061 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gehring, P. et al. Quantum interference in graphene nanoconstrictions. Nano Lett. 16, 4210–4216 (2016).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hayashi, H. et al. Monoradicals and diradicals of dibenzofluoreno[3,2-b]fluorene isomers: mechanisms of electronic delocalization. J. Am. Chem. Soc. 142, 20444–20455 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dressler, J. J. et al. Thiophene and its sulfur inhibit indenoindenodibenzothiophene diradicals from low-energy lying thermal triplets. Nat. Chem. 10, 1134–1140 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, F., Auerbach, A. & Sachs, F. Estimating single-channel kinetic parameters from idealized patch clamp data containing missed events. Biophys. J. 70, 264–280 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, X. et al. Electric field–induced selective catalysis of single-molecule reaction. Sci. Adv. 5, eaaw3072 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian16 Revision C.01 (Gaussian, 2016).

  • Yamaguchi, K. The electronic structures of biradicals in the unrestricted Hartree–Fock approximation. Chem. Phys. Lett. 33, 330–335 (1975).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Schleyer, P. V. R. et al. Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity. Org. Lett. 3, 2465–2468 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Grimme, S. & Hansen, A. A practicable real‐space measure and visualization of static electron correlation effects. Angew. Chem. Int. Ed. 54, 12308–12313 (2005).

    Article 

    Google Scholar
     

  • Wang, M. et al. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 133, 9638–9641 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brandbyge, M., Mozos, J. L., Ordejón, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Wang, B., Wang, J. & Guo, H. Current partition: a nonequilibrium Green’s function approach. Phys. Rev. Lett. 82, 398–401 (1999).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Taylor, J., Guo, H. & Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulations. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Troullier, N. & Martins, J. A straightforward method for generating soft transferable pseudopotentials. Solid State Commun. 74, 613–616 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • spot_img

    VC Cafe

    VC Cafe

    Latest Intelligence

    spot_img