Zephyrnet Logo

Production and characterization of intracellular invertase from Saccharomyces cerevisiae (OL629078.1), using cassava-soybean as a cost-effective substrate – Scientific Reports

Date:

  • de Castro, A. M. et al. Enzyme-catalyzed simultaneous hydrolysis-glycolysis reactions reveals tunability on PET depolymerization products. Biochem. Eng. J. 137, 239–246 (2018).

    Article  CAS  Google Scholar 

  • Shukla, E, Bendre, A. D., & Gaikwad, S.M. Hydrolases: the most diverse class of enzymes. In Hydrolases. (IntechOpen, London, 2022).

  • Arnau, J., Yaver, D. & Hjort, C. M. Strategies and challenges for the development of industrial enzymes using fungal cell factories. Grand Challenges Fungal Biotechnol. 2020, 179–210 (2019).

    Google Scholar 

  • Cosme, F., Inês, A. & Vilela, A. Microbial and commercial enzymes applied in the beverage production process. Fermentation. 9(4), 385 (2023).

    Article  CAS  Google Scholar 

  • Batista, R. D. et al. Optimization of β-fructofuranosidase production from agrowaste by Aspergillus carbonarius and its application in the production of inverted sugar. Food Technol. Biotechnol. 59(3), 306–313 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyedeji, O., Bakare, M. K., Adewale, I. O., Olutiola, P. O. & Omoboye, O. O. Optimized production and characterization of thermostable invertase from Aspergillus niger IBK1, using pineapple peel as alternate substrate. Biocatal. Agric. Biotechnol. 9, 218–223 (2017).

    Article  Google Scholar 

  • Manoochehri, H. et al. A review on invertase: Its potentials and applications. Biocatal. Agric. Biotechnol. 25, 101599 (2020).

    Article  Google Scholar 

  • Zhang, P. et al. Starch saccharification and fermentation of uncooked sweet potato roots for fuel ethanol production. Bioresource Technol. 128, 835–838 (2013).

    Article  CAS  Google Scholar 

  • Moreno-Cadena, P. et al. Modeling growth, development and yield of cassava: A review. Field Crops Res. 267, 108140 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wangpor, J., Prayoonyong, P., Sakdaronnarong, C., Sungpet, A. & Jonglertjunya, W. Bioethanol production from cassava starch by enzymatic hydrolysis, fermentation and ex-situ nanofiltration. Energy Procedia. 138, 883–888 (2017).

    Article  CAS  Google Scholar 

  • de Los Santos, C. B., Krång, A. S. & Infantes, E. Microplastic retention by marine vegetated canopies: Simulations with seagrass meadows in a hydraulic flume. Environ. Pollut. 269, 116050 (2021).

    Article  Google Scholar 

  • Osiebe, O., Adewale, I. O. & Omafuvbe, B. O. Intracellular invertase hyperproducing strain of Saccharomyces cerevisiae isolated from Abagboro palm wine. Sci. Rep. 13(1), 4937 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adewale, I. O., Agumanu, E. N. & Otih-Okoronkwo, F. I. Comparative studies on α-amylases from malted maize (Zea mays), millet (Eleusine coracana) and sorghum (Sorghum bicolor). Carbohydr. Polym. 66(1), 71–74 (2006).

    Article  CAS  Google Scholar 

  • Nelson, N. A photometric adaptation of the Somogyis method for the determination of reducing sugar. Anal. Biochem. 31, 426–428 (1944).

    Google Scholar 

  • Qureshi, A. S., Khushk, I., Ali, C. H., Majeed, H. & Ahmad, A. Production of invertase from Saccharomyces cerevisiae Angel using date syrup as a cost effective carbon source. Afr. J. Biotechnol. 16(15), 777–781 (2017).

    Article  CAS  Google Scholar 

  • Alegre, A. C., Polizeli, M. D., Terenzi, H. F., Jorge, J. A. & Guimarães, L. H. Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustrial residues as carbon source. Braz. J. Microbiol. 40, 612–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Nascimento, V. M., Antoniolli, G. T., Leite, R. S. & Fonseca, G. G. Effects of the carbon source on the physiology and invertase activity of the yeast Saccharomyces cerevisiae FT858. 3 Biotech. 10, 1–9 (2020).

    Article  Google Scholar 

  • Nehad, E. A. & Atalla, S. M. Production and immobilization of invertase from Penicillium sp. using orange peel waste as substrate. Egypt. Pharm. J. 19(2), 103 (2020).

    Article  Google Scholar 

  • Okpara, M. O. Microbial enzymes and their applications in food industry: a mini-review. Advan. Enzym. Res. 10(1), 23–47 (2022).

    Article  CAS  Google Scholar 

  • Krishnan, S. et al. Bioethanol production from lignocellulosic biomass (water hyacinth): a biofuel alternative. In Bioreactors (pp 123–143). (Elsevier, 2020).

  • da Luz, F. S., Bueno, A. F., Caetano, R. N., Rodrigues, P. R. & do Prado Banczek, E. Enzymatic hydrolysis of cassava starch using barley malt amylases. Orbital Electron. J. Chem. 6, 205–211 (2021).

    Google Scholar 

  • Krajang, M., Malairuang, K., Sukna, J., Rattanapradit, K. & Chamsart, S. Single-step ethanol production from raw cassava starch using a combination of raw starch hydrolysis and fermentation, scale-up from 5-L laboratory and 200-L pilot plant to 3000-L industrial fermenters. Biotechnol Biofuels. 14(1), 1–5 (2021).

    Article  Google Scholar 

  • Souza, P. M. Application of microbial α-amylase in industry-A review. Braz. J. Microbiol. 41, 850–861 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gregson, B. H., Metodieva, G., Metodiev, M. V., Golyshin, P. N. & McKew, B. A. Differential protein expression during growth on medium versus long-chain alkanes in the obligate marine hydrocarbon-degrading bacterium Thalassolituus oleivorans MIL-1. Front. microbial. 9, 3130 (2018).

    Article  Google Scholar 

  • Rashad, M. M. & Nooman, M. U. Production, purification and characterization of extracellular invertase from Saccharomyses cerevisiae NRRL Y-12632 by solid-state fermentation of red carrot residue. Aust. J. Basic Appl. Sci. 3(3), 1910–1919 (2009).

    CAS  Google Scholar 

  • Kashif, A. & Valeem, E. E. Biosynthesis, purification and characterization of commercial enzyme by Penicillium expansum Link. Pak. J. Bot. 47(4), 1521–1526 (2015).

    Google Scholar 

  • Aslam, A. & Ali, S. Purification and characterization of two invertases from mutant strain of Saccharomyces cerevisiae. Pak. J. Bot. 45(1), 285–291 (2013).

    Google Scholar 

  • Bhalla, T. C., Thakur, N. & Thakur, N. Invertase of Saccharomyces cerevisiae SAA-612: Production, characterization and application in synthesis of fructo-oligosaccharides. LWT. 77, 178–185 (2017).

    Article  Google Scholar 

  • Avila, T. L. et al. Extraction, purification and characterization of invertase from Candida guilliermondii isolated from peach solid wastes. Revista Brasileira de Fruticultura. 44, e-849 (2022).

    Article  Google Scholar 

  • Shankar, T., Thangamathi, P., Rama, R. & Sivakumar, T. Characterization of invertase from Saccharomyces cerevisiae MTCC 170. Afr. J. Microbiol. Res. 8(13), 1385–1393 (2014).

    Article  CAS  Google Scholar 

  • Vavitsas, K., Glekas, P. D. & Hatzinikolaou, D. G. Synthetic biology of thermophiles: Taking bioengineering to the extremes?. Appl. Microbiol. 2(1), 165–174 (2022).

    Article  Google Scholar 

  • Barbosa, P. M. G. et al. Biochemical characterization and evaluation of invertases produced from Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa for the production of fructooligosaccharides. Prep. Biochem. Biotechnol. 48(6), 506–513 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J. et al. Characterization of a novel low-temperature-active, alkaline and sucrose-tolerant invertase. Sci. Reps. 6(1), 32081 (2016).

    Article  CAS  Google Scholar 

  • Dal Maso, S. S. et al. Investigation of optimal conditions for production, characterization, and immobilization of fungi. Biointerface Res. Appl. Chem. 11(4), 11187–11201 (2021).

    CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img