Zephyrnet Logo

Predicting accidental release of engineered nanomaterials to the environment

Date:

  • Hochella, M. F. et al. Natural, incidental, and engineered nanomaterials and their impacts on the earth system. Science 363, eaau8299 (2019).

    Article  Google Scholar 

  • European Commission. Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial. Official Journal of the European Union L275, 38–40 (2011).

  • Kaegi, R. et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 156, 233–239 (2008).

    Article  CAS  Google Scholar 

  • Praetorius, A. et al. Single-particle multi-element fingerprinting (SpMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environ. Sci. Nano 4, 307–314 (2017).

    Article  CAS  Google Scholar 

  • Flores, K. et al. Environmental applications and recent innovations in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Appl. Spectrosc. Rev. 56, 1–26 (2021).

    Article  CAS  Google Scholar 

  • Mehrabi, K., Gunther, D. & Gundlach-Graham, A. Single-particle ICP-TOFMS with online microdroplet calibration for the simultaneous quantification of diverse nanoparticles in complex matrices. Environ. Sci. Nano 6, 3349–3358 (2019).

    Article  CAS  Google Scholar 

  • Mehrabi, K., Kaegi, R., Gunther, D. & Gundlach-Graham, A. Emerging investigator series: automated single-nanoparticle quantification and classification: a holistic study of particles into and out of wastewater treatment plants in Switzerland. Environ. Sci. Nano 8, 1211–1225 (2021).

    Article  CAS  Google Scholar 

  • Loosli, F. et al. Sewage spills are a major source of titanium dioxide engineered (nano)-particle release into the environment. Environ. Sci. Nano 6, 763–777 (2019).

    Article  CAS  Google Scholar 

  • Wang, J., Nabi, M. M., Erfani, M., Goharian, E. & Baalousha, M. Identification and quantification of anthropogenic nanomaterials in urban rain and runoff using single particle-inductively coupled plasma-time of flight-mass spectrometry. Environ. Sci. Nano 9, 714–729 (2022).

    Article  CAS  Google Scholar 

  • von der Kammer, F. et al. Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ. Toxicol. Chem. 31, 32–49 (2012).

    Article  Google Scholar 

  • Wigger, H., Kägi, R., Wiesner, M. & Nowack, B. Exposure and possible risks of engineered nanomaterials in the environment—current knowledge and directions for the future. Rev. Geophys. 58, e2020RG000710 (2020).

    Article  Google Scholar 

  • Bland, G. D., Battifarano, M., Pradas del Real, A. E., Sarret, G. & Lowry, G. V. Distinguishing engineered TiO2 nanomaterials from natural Ti nanomaterials in soil using SpICP-TOFMS and machine learning. Environ. Sci. Technol. 56, 2990–3001 (2022).

    Article  CAS  Google Scholar 

  • Wiesner, M. R., Lowry, G. V., Alvarez, P., Dionysiou, D. & Biswas, P. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345 (2006).

    Article  CAS  Google Scholar 

  • Gottschalk, F., Sonderer, T., Scholz, R. W. & Nowack, B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43, 9216–9222 (2009).

    Article  CAS  Google Scholar 

  • Keller, A. A., McFerran, S., Lazareva, A. & Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 15, 1692 (2013).

    Article  Google Scholar 

  • Song, R., Qin, Y., Suh, S. & Keller, A. A. Dynamic model for the stocks and release flows of engineered nanomaterials. Environ. Sci. Technol. 51, 12424–12433 (2017).

    Article  CAS  Google Scholar 

  • Sun, T. Y. et al. Envisioning nano release dynamics in a changing world: using dynamic probabilistic modeling to assess future environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 51, 2854–2863 (2017).

    Article  CAS  Google Scholar 

  • Giese, B. et al. Risks, release and concentrations of engineered nanomaterial in the environment. Sci. Rep. 8, 1565 (2018).

    Article  Google Scholar 

  • Sun, T. Y., Bornhöft, N. A., Hungerbühler, K. & Nowack, B. Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 50, 4701–4711 (2016).

    Article  CAS  Google Scholar 

  • Zheng, Y., Mutzner, L., Ort, C., Kaegi, R. & Gottschalk, F. Modelling engineered nanomaterials in wet-weather discharges. NanoImpact 16, 100188 (2019).

    Article  Google Scholar 

  • European Research Project: GUIDEnano. https://www.guidenano.eu/ (accessed 18 October 2022).

  • European Research Project (H2020): GRACIOUS. https://cordis.europa.eu/project/id/760840/de (accessed 18 October 2022).

  • European Research Project (8FP7): ENPRA. https://cordis.europa.eu/project/id/228789/de (accessed 18 October 2022).

  • European Research Project (H2020): RiskGONE. https://riskgone.wp.nilu.no/ (accessed 19 December 2022).

  • Isigonis, P. et al. Risk governance of nanomaterials: review of criteria and tools for risk communication, evaluation, and mitigation. Nanomaterials (Basel) 9, 696 (2019).

    Article  CAS  Google Scholar 

  • Read, S. A. K., Kass, G. S., Sutcliffe, H. R. & Hankin, S. M. Foresight study on the risk governance of new technologies: the case of nanotechnology. Risk Anal. 36, 1006–1024 (2016).

    Article  Google Scholar 

  • Walser, T. et al. Exposure to engineered nanoparticles: model and measurements for accident situations in laboratories. Sci. Total Environ. 420, 119–126 (2012).

    Article  CAS  Google Scholar 

  • Nowack, B., Mueller, N. C., Krug, H. F. & Wick, P. How to consider engineered nanomaterials in major accident regulations. Environ. Sci. Eur. 26, 2 (2014).

    Article  Google Scholar 

  • Kim, K. H., Kim, J. B., Ji, J. H., Lee, S. B. & Bae, G. N. Nanoparticle formation in a chemical storage room as a new incidental nanoaerosol source at a nanomaterial workplace. J. Hazard. Mater. 298, 36–45 (2015).

    Article  CAS  Google Scholar 

  • Pilou, M. et al. Modeling of occupational exposure to accidentally released manufactured nanomaterials in a production facility and calculation of internal doses by inhalation. Int. J. Occup. Environ. Health 22, 249–258 (2016).

    Article  Google Scholar 

  • Delvosalle, C., Fiévez, C. & Pipart, A. ARAMIS project: reference accident scenarios definition in Seveso establishment. J. Risk Res. 9, 583–600 (2006).

    Article  Google Scholar 

  • Debray, B. et al. in Probabilistic Safety Assessment and Management (eds Spitzer, C. et al.) 358–363 (Springer, 2004); https://doi.org/10.1007/978-0-85729-410-4_58

  • Tixier, J., Dusserre, G., Salvi, O. & Gaston, D. Review of 62 risk analysis methodologies of industrial plants. J. Loss Prev. Process Ind. 15, 291–303 (2002).

    Article  Google Scholar 

  • Khan, F., Rathnayaka, S. & Ahmed, S. Methods and models in process safety and risk management: past, present and future. Process Saf. Environ. Prot. 98, 116–147 (2015).

    Article  CAS  Google Scholar 

  • Bottomley, P. D. W. et al. Severe accident research at the Transuranium Institute Karlsruhe: a review of past experience and its application to future challenges. Ann. Nucl. Energy 65, 345–356 (2014).

    Article  CAS  Google Scholar 

  • ARIA. La référence du retour d’expérience sur accidents technologiques. https://www.aria.developpement-durable.gouv.fr/ (accessed 18 October 2022).

  • Debray, B., Lacome, J.-M., Vignes, A., Gottschalk, F. Catalogue of Potential Accidental Releases and Accidental Release Model NanoFASE Project Deliverable D4.4 (NanoFASE, 2019); http://nanofase.eu/documents/reports

  • Safety of Nuclear Power Reactors (Light Water-Cooled) and Related Facilities WASH-1250 (US Atomic Energy Commission, 1973).

  • Ha-Duong, M. & Journé, V. Calculating nuclear accident probabilities from empirical frequencies. Environ. Syst. Decis. 34, 249–258 (2014).

    Article  Google Scholar 

  • Hendren, C. O. et al. Bridging nanoEHS research efforts. NanoEHS Scrimmage. US–EU.org (2016); https://us-eu.org/wp-content/uploads/2016/06/Hendren_Scrimmage_Intro_V3.pdf

  • Maynard, A. D. & Aitken, R. J. ‘Safe handling of nanotechnology’ ten years on. Nat. Nanotech 11, 998–1000 (2016).

    Article  CAS  Google Scholar 

  • Syberg, K. & Hansen, S. F. Environmental risk assessment of chemicals and nanomaterials—the best foundation for regulatory decision-making? Sci. Total Environ. 541, 784–794 (2016).

    Article  CAS  Google Scholar 

  • Krug, H. F. Nanosafety research—are we on the right track? Angew. Chem. Int. Ed. 53, 12304–12319 (2014).

    CAS  Google Scholar 

  • Déclaration des substances à l’état nanoparticulaire. R-Nano.fr https://www.r-nano.fr/ (accessed 18 October 2022).

  • Risks. Lloyd’s Emerging Risks Team Report (Lloyd’s, 2007).

  • R: A Language and Environment for Statistical Computing (R Core Team, 2018).

  • spot_img

    Latest Intelligence

    spot_img