Zephyrnet Logo

Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction

Date:

  • Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).

    Article  CAS  Google Scholar 

  • Wu, J. B. et al. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 3, 466–472 (2020).

    Article  Google Scholar 

  • Wang, S. et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 12, 53 (2021).

    Article  CAS  Google Scholar 

  • Wang, X. W. et al. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 12, 1109 (2021).

    Article  CAS  Google Scholar 

  • Dai, M. et al. Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Lett. 19, 5410–5416 (2019).

    Article  CAS  Google Scholar 

  • Marega, G. M. et al. Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020).

    Article  Google Scholar 

  • Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Article  Google Scholar 

  • Khan, A. I. et al. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).

    Article  Google Scholar 

  • Tong, L. et al. 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373, 1353–1358 (2021).

    Article  CAS  Google Scholar 

  • Ding, W. J. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).

    Article  CAS  Google Scholar 

  • Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017).

    Article  CAS  Google Scholar 

  • Xue, F. et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 28, 1803738 (2018).

    Article  Google Scholar 

  • Cui, C. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 18, 1253–1258 (2018).

    Article  CAS  Google Scholar 

  • Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  CAS  Google Scholar 

  • Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article  CAS  Google Scholar 

  • Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).

    Article  Google Scholar 

  • Bao, Y. et al. Gate-tunable in-plane ferroelectricity in few-layer SnS. Nano Lett. 19, 5109–5117 (2019).

    Article  CAS  Google Scholar 

  • Zheng, C. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 4, eaar7720 (2018).

    Article  Google Scholar 

  • Xu, C. et al. Two-dimensional antiferroelectricity in nanostripe-ordered In2Se3. Phys. Rev. Lett. 125, 047601 (2020).

    Article  CAS  Google Scholar 

  • Chen, Z. et al. Atomic imaging of electrically switchable striped domains in β′-In2Se3. Adv. Sci. 8, 2100713 (2021).

    Article  CAS  Google Scholar 

  • Zhang, Z. M. et al. Atomic visualization and switching of ferroelectric order in β-In2Se3 films at the single layer limit. Adv. Mater. 33, 202106951 (2021).

    Google Scholar 

  • Xu, C. et al. Two-dimensional ferroelasticity in van der Waals β’-In2Se3. Nat. Commun. 12, 3665 (2021).

    Article  CAS  Google Scholar 

  • Collins, J. L. et al. Electronic band structure of in-plane ferroelectric van der Waals β′-In2Se3. ACS Appl. Electron. Mater 2, 213–219 (2020).

    Article  CAS  Google Scholar 

  • Han, G. et al. Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small 10, 2747–2765 (2014).

    Article  CAS  Google Scholar 

  • Tao, X. & Gu, Y. Crystalline−crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett. 13, 3501–3505 (2013).

    Article  CAS  Google Scholar 

  • Liu, L. et al. Atomically resolving polymorphs and crystal structures of In2Se3. Chem. Mater. 31, 10143 (2019).

    Article  CAS  Google Scholar 

  • Balakrishnan, N. et al. Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport. 2D Mater. 3, 025030 (2016).

    Article  Google Scholar 

  • Rashid, R. et al. Shape-control growth of 2D-In2Se3 with out-of-plane ferroelectricity by chemical vapor deposition. Nanoscale 12, 20189–20201 (2020).

    Article  CAS  Google Scholar 

  • Van Landuyt, J. et al. Phase transitions in In2Se3 as studied by electron microscopy and electron diffraction. Phys. Stat. Sol. (a) 3, 299–314 (1975).

    Article  Google Scholar 

  • Lin, M. et al. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. J. Am. Chem. Soc. 135, 13274–13277 (2013).

    Article  CAS  Google Scholar 

  • Balakrishnan, N. et al. Epitaxial growth of-InSe and α, β, and γ-In2Se3 on ε-GaSe. 2D Mater. 5, 035026 (2018).

    Article  Google Scholar 

  • Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  CAS  Google Scholar 

  • Tang, L. et al. Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano 4, 4646–4653 (2020).

    Article  Google Scholar 

  • Lakin, N. M. et al. The identification of In2O in the gas phase by high resolution electronic spectroscopy. J. Chem. Phys. 107, 4439–4442 (1997).

    Article  CAS  Google Scholar 

  • Ly, T. H. et al. Edge delamination of monolayer transition metal dichalcogenides. ACS Nano 11, 7534–7541 (2017).

    Article  CAS  Google Scholar 

  • Huang, L. et al. Mechanical origin of martensite-like structures in two-dimensional ReS2. Commun. Mater. 2, 87 (2021).

    Article  CAS  Google Scholar 

  • Vilaplana, R. et al. Experimental and theoretical studies on α‑In2Se3 at high pressure. Inorg. Chem. 57, 8241–8252 (2018).

    Article  CAS  Google Scholar 

  • Li, W., Qian, X. & Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 6, 829–846 (2021).

    Article  CAS  Google Scholar 

  • Yang, S. X. et al. Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat 3, 397–420 (2021).

    Article  Google Scholar 

  • Zhang, X. et al. Epitaxial growth of few-layer β-In2Se3 thin films by metalorganic chemical vapor deposition. J. Cryst. Growth 533, 125471 (2020).

    Article  CAS  Google Scholar 

  • Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  • Xu, X. L. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).

    Article  CAS  Google Scholar 

  • Zhou, J. et al. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett. 15, 6400–6405 (2015).

    Article  CAS  Google Scholar 

  • Zheng, Z. Q. et al. Self-assembly of the lateral In2Se3/CuInSe2 heterojunction for enhanced photodetection. ACS Appl. Mater. Interfaces 9, 7288–7296 (2017).

    Article  CAS  Google Scholar 

  • Yuan, S. G. et al. Enhanced piezoelectric response of layered In2Se3/MoS2 nanosheet-based van der Waals heterostructures. ACS Appl. Nano Mater. 3, 11979–11986 (2020).

    Article  CAS  Google Scholar 

  • Igo, J. et al. Photodefined in-plane heterostructures in two-dimensional In2Se3 nanolayers for ultrathin photodiodes. ACS Appl. Nano Mater. 2, 6774–6782 (2019).

    Article  CAS  Google Scholar 

  • Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).

    Article  CAS  Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  • Dion, M. et al. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  CAS  Google Scholar 

  • Román-Pérez, G. & Soler, J. M. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009).

    Article  Google Scholar 

  • Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img