Zephyrnet Logo

Membrane-anchored DNA nanojunctions enable closer antigen-presenting cell–T-cell contact in elevated T-cell receptor triggering

Date:

  • Weiss, A. & Dan, R. L. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  Google Scholar 

  • Brownlie, R. J. & Zamoyska, R. T cell receptor signalling networks: branched, diversified and bounded. Nat. Rev. Immunol. 13, 257–269 (2013).

    Article  CAS  Google Scholar 

  • Chakraborty, A. K. & Weiss, A. Insights into the initiation of TCR signaling. Nat. Immunol. 15, 798–807 (2014).

    Article  CAS  Google Scholar 

  • Xu, X., Li, H. & Xu, C. Structural understanding of T cell receptor triggering. Cell. Mol. Immunol. 17, 193–202 (2020).

    Article  CAS  Google Scholar 

  • Schamel, W. W., Alarcon, B. & Minguet, S. The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunol. Rev. 291, 8–25 (2019).

    Article  CAS  Google Scholar 

  • Lee, M. S. et al. A mechanical switch couples T cell receptor triggering to the cytoplasmic juxtamembrane regions of CD3ζζ. Immunity 43, 227–239 (2015).

    Article  CAS  Google Scholar 

  • Feng, Y., Reinherz, E. L. & Lang, M. J. αβ T cell receptor mechanosensing forces out serial engagement. Trends Immunol. 39, 596–609 (2018).

    Article  CAS  Google Scholar 

  • Mckeithan, T. W. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl Acad. Sci. USA 92, 5042–5046 (1992).

    Article  Google Scholar 

  • Rabinowitz, J. D., Beeson, C., Lyons, D. S. & Mcconnell, D. H. M. Kinetic discrimination in T-cell activation. Proc. Natl Acad. Sci. USA 93, 1401–1405 (1996).

    Article  CAS  Google Scholar 

  • Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010).

    Article  CAS  Google Scholar 

  • Huppa, J. B. et al. TCR–peptide–MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463, 963–967 (2010).

    Article  CAS  Google Scholar 

  • Springer, T. A. Adhesion receptors of the immune system. Nature 346, 425–434 (1990).

    Article  CAS  Google Scholar 

  • Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. G. & Der Merwe, P. A. V. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436, 578–582 (2005).

    Article  CAS  Google Scholar 

  • Cai, H. et al. Full control of ligand positioning reveals spatial thresholds for T-cell receptor triggering. Nat. Nanotechnol. 13, 610–617 (2018).

    Article  CAS  Google Scholar 

  • Sun, L. et al. DNA-edited ligand positioning on red blood cells to enable optimized T-cell activation for adoptive immunotherapy. Angew. Chem. Int. Ed. 59, 14842–14853 (2020).

    Article  CAS  Google Scholar 

  • Garcia, K. C. et al. An alphabeta T-cell receptor structure at 2.5 Å and its orientation in the TCR–MHC complex. Science 274, 209–219 (1996).

    Article  CAS  Google Scholar 

  • Birnbaum, M. E. et al. Deconstructing the peptide–MHC specificity of T-cell recognition. Cell 157, 1073–1087 (2014).

    Article  CAS  Google Scholar 

  • McCall, M. N., Shotton, D. M. & Barclay, A. N. Expression of soluble isoforms of rat CD45. Analysis by electron microscopy and use in epitope mapping of anti-CD45R monoclonal antibodies. Immunology 76, 310–317 (1992).

    CAS  Google Scholar 

  • Carbone, C. B. et al. In vitro reconstitution of T-cell receptor-mediated segregation of the CD45 phosphatase. Proc. Natl Acad. Sci. USA 114, E9338–E9345 (2017).

    Article  CAS  Google Scholar 

  • Chang, V. T. et al. Initiation of T cell signaling by CD45 segregation at ‘close contacts’. Nat. Immunol. 17, 574–582 (2016).

    Article  CAS  Google Scholar 

  • Hermiston, M. L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).

    Article  CAS  Google Scholar 

  • Davis, S. J. & van der Merwe, P. A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7, 803–809 (2006).

    Article  CAS  Google Scholar 

  • Razvag, Y., Neve-Oz, Y., Sajman, J., Reches, M. & Sherman, E. Nanoscale kinetic segregation of TCR and CD45 in engaged microvilli facilitates early T cell activation. Nat. Commun. 9, 732 (2018).

    Article  Google Scholar 

  • Li, Y.-C. et al. Cutting edge: mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J. Immunol. 184, 5959–5963 (2010).

    Article  CAS  Google Scholar 

  • James, J. R. & Vale, R. D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487, 64–69 (2012).

    Article  CAS  Google Scholar 

  • Irles, C. et al. CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nat. Immunol. 4, 189–197 (2003).

    Article  CAS  Google Scholar 

  • Chen, B. et al. The affinity of elongated membrane-tethered ligands determines potency of T cell receptor triggering. Front. Immunol. 8, 793 (2017).

    Article  Google Scholar 

  • Choudhuri, K. & van der Merwe, P. A. Molecular mechanisms involved in T cell receptor triggering. Semin. Immunol. 19, 255–261 (2007).

    Article  CAS  Google Scholar 

  • van der Merwe, P. A. & Dushek, O. Mechanisms for T cell receptor triggering. Nat. Rev. Immunol. 11, 47–55 (2011).

    Article  Google Scholar 

  • Malissen, B. & Bongrand, P. Early T cell activation: integrating biochemical, structural, and biophysical cues. Annu. Rev. Immunol. 33, 539–561 (2015).

    Article  CAS  Google Scholar 

  • Courtney, A. H., Lo, W.-L. & Weiss, A. TCR signaling: mechanisms of initiation and propagation. Trends Biochem. Sci. 43, 108–123 (2018).

    Article  CAS  Google Scholar 

  • Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    Article  CAS  Google Scholar 

  • Lin, M. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem. Int. Ed. 54, 2151–2155 (2015).

    Article  CAS  Google Scholar 

  • Li, J. et al. Cell-membrane-anchored DNA nanoplatform for programming cellular interactions. J. Am. Chem. Soc. 141, 18013–18020 (2019).

    Article  CAS  Google Scholar 

  • Jung, Y. et al. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc. Natl Acad. Sci. USA 113, E5916–E5924 (2016).

    Article  CAS  Google Scholar 

  • Yi, J. C. & Samelson, L. E. Microvilli set the stage for T-cell activation. Proc. Natl Acad. Sci. USA 113, 11061–11062 (2016).

    Article  CAS  Google Scholar 

  • Du, Y. et al. Ligand dilution analysis facilitates aptamer binding characterization at the single-molecule level. Angew. Chem. Int. Ed. 7, e202215387 (2022).

    Google Scholar 

  • Huse, M. et al. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 27, 76–88 (2007).

    Article  CAS  Google Scholar 

  • Armstrong, J. K., Wenby, R. B., Meiselman, H. J. & Fisher, T. C. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys. J. 87, 4259–4270 (2004).

    Article  CAS  Google Scholar 

  • Zehn, D., Lee, S. Y. & Bevan, M. J. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458, 211–214 (2009).

    Article  CAS  Google Scholar 

  • Law, C. C. et al. Expression and characterization of recombinant soluble human CD3 molecules: presentation of antigenic epitopes defined on the native TCR–CD3 complex. Int. Immunol. 14, 389–400 (2002).

    Article  CAS  Google Scholar 

  • Cohen, S. & Milstein, C. Structure of antibody molecules. Nature 214, 449–452 (1967).

    Article  CAS  Google Scholar 

  • Mosayebi, M., Louis, A. A., Doye, J. P. K. & Ouldridge, T. E. Force-induced rupture of a DNA duplex: from fundamentals to force sensors. ACS Nano 9, 11993–12003 (2015).

    Article  CAS  Google Scholar 

  • Furukawa, T., Itoh, M., Krueger, N. X., Streuli, M. & Saito, H. Specific interaction of the CD45 protein-tyrosine phosphatase with tyrosine-phosphorylated CD3 zeta chain. Proc. Natl Acad. Sci. USA 91, 10928–10932 (1994).

    Article  CAS  Google Scholar 

  • Hegedus, Z. et al. Contribution of kinases and the CD45 phosphatase to the generation of tyrosine phosphorylation patterns in the T cell receptor complex ζ chain. Immunol. Lett. 67, 31–39 (1999).

    Article  CAS  Google Scholar 

  • Straus, D. B. & Weiss, A. The CD3 chains of the T cell antigen receptor associate with the ZAP-70 tyrosine kinase and are tyrosine phosphorylated after receptor stimulation. J. Exp. Med. 178, 1523–1530 (1993).

    Article  CAS  Google Scholar 

  • Chan, A. C., Iwashima, M., Turck, C. W. & Weiss, A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell 71, 649–662 (1992).

    Article  CAS  Google Scholar 

  • Sherman, E. et al. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35, 705–720 (2011).

    Article  CAS  Google Scholar 

  • Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).

    Article  CAS  Google Scholar 

  • Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    Article  CAS  Google Scholar 

  • Stone, J. D., Chervin, A. S. & Kranz, D. M. T cell receptor binding affinities and kinetics: impact on T cell activity and specificity. Immunology 126, 165–176 (2009).

    Article  CAS  Google Scholar 

  • Valitutti, S., Müller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature 375, 148–151 (1995).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img