Zephyrnet Logo

Machine learning in bioprocess development: from promise to practice

Date:

    • Mitchell T.
    • et al.

    Machine learning.

    Annu. Rev. Comput. Sci. 1990; 4: 417-433

    • Ender T.R.
    • Balestrini-Robinson S.

    Surrogate modeling.

    in: Loper M.L. Modeling and Simulation in the Systems Engineering Life Cycle. Springer, 2015: 201-216

    • Miller T.H.
    • et al.

    Machine learning for environmental toxicology: a call for integration and innovation.

    Environ. Sci. Technol. 2018; 52: 12953-12955

    • Bonetta R.
    • Valentino G.

    Machine learning techniques for protein function prediction.

    Proteins. 2020; 88: 397-413

    • Reel P.S.
    • et al.

    Using machine learning approaches for multi-omics data analysis: a review.

    Biotechnol. Adv. 2021; 49107739

    • Villoutreix P.

    What machine learning can do for developmental biology.

    Development. 2021; 148: dev188474

    • Muzio G.
    • et al.

    Biological network analysis with deep learning.

    Brief. Bioinform. 2021; 22: 1515-1530

    • Volk M.J.
    • et al.

    Biosystems design by machine learning.

    ACS Synth. Biol. 2020; 9: 1514-1533

    • Mowbray M.
    • et al.

    Machine learning for biochemical engineering: a review.

    Biochem. Eng. J. 2021; 172108054

    • Angermueller C.
    • et al.

    Deep learning for computational biology.

    Mol. Syst. Biol. 2016; 12: 878

    • Jumper J.
    • et al.

    Highly accurate protein structure prediction with AlphaFold.

    Nature. 2021; 596: 583-589

    • Walters W.P.
    • Barzilay R.

    Applications of deep learning in molecule generation and molecular property prediction.

    Acc. Chem. Res. 2021; 54: 263-270

    • Butler K.T.
    • et al.

    Machine learning for molecular and materials science.

    Nature. 2018; 559: 547-555

    • Ding Y.
    • et al.

    Machine learning approaches for predicting biomolecule-disease associations.

    Brief. Funct. Genomics. 2021; 20: 273-287

    • Graves J.
    • et al.

    A review of deep learning methods for antibodies.

    Antibodies (Basel). 2020; 9: 12

    • Leavell M.D.
    • et al.

    High-throughput screening for improved microbial cell factories, perspective and promise.

    Curr. Opin. Biotechnol. 2020; 62: 22-28

    • Silva T.C.
    • et al.

    Automation and miniaturization: enabling tools for fast, high-throughput process development in integrated continuous biomanufacturing.

    J. Chem. Technol. Biotechnol. 2021; 97: 2365-2375

    • Wasalathanthri D.P.
    • et al.

    Process analytics 4.0: a paradigm shift in rapid analytics for biologics development.

    Biotechnol. Prog. 2021; 37e3177

    • Carbonell P.
    • et al.

    An automated design-build-test-learn pipeline for enhanced microbial production of fine chemicals.

    Commun. Biol. 2018; 1: 66-69

    • Opgenorth P.
    • et al.

    Lessons from two design-build-test-learn cycles of dodecanol production in Escherichia coli aided by machine learning.

    ACS Synth. Biol. 2019; 8: 1337-1351

    • Liao X.
    • et al.

    Artificial intelligence: a solution to involution of design-build-test-learn cycle.

    Curr. Opin. Biotechnol. 2022; 75102712

    • Dickens J.
    • et al.

    Biopharmaceutical raw material variation and control.

    Curr. Opin. Chem. Eng. 2018; 22: 236-243

    • Jordan M.
    • et al.

    Intensification of large-scale cell culture processes.

    Curr. Opin. Chem. Eng. 2018; 22: 253-257

    • von Stosch M.
    • et al.

    A roadmap to AI-driven in silico process development: bioprocessing 4.0 in practice.

    Curr. Opin. Chem. Eng. 2021; 33100692

    • Artico F.
    • et al.

    The future of artificial intelligence for the BioTech big data landscape.

    Curr. Opin. Biotechnol. 2022; 76102714

    • Joshi V.S.
    • et al.

    Optimization of ion exchange sigmoidal gradients using hybrid models: implementation of quality by design in analytical method development.

    J. Chromatogr. A. 2017; 1491: 145-152

    • Wang G.
    • et al.

    Root cause investigation of deviations in protein chromatography based on mechanistic models and artificial neural networks.

    J. Chromatogr. A. 2017; 1515: 146-153

    • Brestrich N.
    • et al.

    Selective protein quantification for preparative chromatography using variable pathlength UV/Vis spectroscopy and partial least squares regression.

    Chem. Eng. Sci. 2018; 176: 157-164

    • Risum A.B.
    • Bro R.

    Using deep learning to evaluate peaks in chromatographic data.

    Talanta. 2019; 204: 255-260

    • Kensert A.
    • et al.

    Deep Q-learning for the selection of optimal isocratic scouting runs in liquid chromatography.

    J. Chromatogr. A. 2021; 1638461900

    • Vaskevicius M.
    • et al.

    Prediction of chromatography conditions for purification in organic synthesis using deep learning.

    Molecules. 2021; 26: 2474

    • Liu S.
    • Papageorgiou L.G.

    Optimal antibody purification strategies using data-driven models.

    Engineering. 2019; 5: 1077-1092

    • Walther C.
    • et al.

    Smart process development: application of machine-learning and integrated process modeling for inclusion body purification processes.

    Biotechnol. Prog. 2022; 38e3249

    • Wehrs M.
    • et al.

    You get what you screen for: on the value of fermentation characterization in high-throughput strain improvements in industrial settings.

    J. Ind. Microbiol. Biotechnol. 2020; 47: 913-927

    • Hemmerich J.
    • et al.

    Microbioreactor systems for accelerated bioprocess development.

    Biotechnol. J. 2018; 13e1700141

    • Grav L.M.
    • et al.

    Minimizing clonal variation during mammalian cell line engineering for improved systems biology data generation.

    ACS Synth. Biol. 2018; 7: 2148-2159

    • McKinley K.L.
    • Cheeseman I.M.

    Large-scale analysis of CRISPR/Cas9 cell-cycle knockouts reveals the diversity of p53-dependent responses to cell-cycle defects.

    Dev. Cell. 2017; 40: 405-420

    • Mazurenko S.
    • et al.

    Machine learning in enzyme engineering.

    ACS Catal. 2019; 10: 1210-1223

    • Siedhoff N.E.
    • et al.

    Machine learning-assisted enzyme engineering.

    Methods Enzymol. 2020; 643: 281-315

    • Gu C.
    • et al.

    Current status and applications of genome-scale metabolic models.

    Genome Biol. 2019; 20: 121

    • Srinivasan S.
    • et al.

    Constructing kinetic models of metabolism at genome-scales: a review.

    Biotechnol. J. 2015; 10: 1345-1359

    • Almquist J.
    • et al.

    Kinetic models in industrial biotechnology – improving cell factory performance.

    Metab. Eng. 2014; 24: 38-60

    • Stalidzans E.
    • et al.

    Model-based metabolism design: constraints for kinetic and stoichiometric models.

    Biochem. Soc. Trans. 2018; 46: 261-267

    • Heirendt L.
    • et al.

    Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0.

    Nat. Protoc. 2019; 14: 639-702

    • Oyetunde T.
    • et al.

    Leveraging knowledge engineering and machine learning for microbial bio-manufacturing.

    Biotechnol. Adv. 2018; 36: 1308-1315

    • Orth J.D.
    • et al.

    What is flux balance analysis?.

    Nat. Biotechnol. 2010; 28: 245-248

    • Segre D.
    • et al.

    Analysis of optimality in natural and perturbed metabolic networks.

    Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 15112-15117

    • Schneider P.
    • et al.

    An extended and generalized framework for the calculation of metabolic intervention strategies based on minimal cut sets.

    PLoS Comput. Biol. 2020; 16e1008110

    • Mishra B.
    • et al.

    Systems biology and machine learning in plant-pathogen interactions.

    Mol. Plant-Microbe Interact. 2019; 32: 45-55

    • Rana P.
    • et al.

    Recent advances on constraint-based models by integrating machine learning.

    Curr. Opin. Biotechnol. 2020; 64: 85-91

    • King Z.A.
    • et al.

    Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion.

    Metab. Eng. 2017; 39: 220-227

    • Oyetunde T.
    • et al.

    Machine learning framework for assessment of microbial factory performance.

    PLoS One. 2019; 14e0210558

    • Zhang J.
    • et al.

    Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism.

    Nat. Commun. 2020; 11: 4880

    • Radivojevic T.
    • et al.

    A machine learning automated recommendation tool for synthetic biology.

    Nat. Commun. 2020; 11: 4879

    • Pedregosa F.
    • et al.

    Scikit-learn: machine learning in python.

    J. Mach. Learn. Res. 2011; 12: 2825-2830

    • Carbonell P.
    • et al.

    Opportunities at the intersection of synthetic biology, machine learning, and automation.

    ACS Synth. Biol. 2019; 8: 1474-1477

    • Faure L.
    • et al.

    Artificial metabolic networks: enabling neural computation with metabolic networks.

    bioRxiv. 2022; ()

    • Zampieri G.
    • et al.

    Machine and deep learning meet genome-scale metabolic modeling.

    PLoS Comput. Biol. 2019; 15e1007084

    • Antonakoudis A.
    • et al.

    The era of big data: genome-scale modelling meets machine learning.

    Comput. Struct. Biotechnol. J. 2020; 18: 3287-3300

    • van Rosmalen R.P.
    • et al.

    Model reduction of genome-scale metabolic models as a basis for targeted kinetic models.

    Metab. Eng. 2021; 64: 74-84

    • Choudhury S.
    • et al.

    Reconstructing kinetic models for dynamical studies of metabolism using generative adversarial networks.

    Nat. Mach. Intell. 2022; 4: 710-719

    • Sabzevari M.
    • et al.

    Strain design optimization using reinforcement learning.

    PLoS Comput. Biol. 2022; 18e1010177

    • Wu S.G.
    • et al.

    Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming.

    PLoS Comput. Biol. 2016; 12e1004838

    • Li G.
    • et al.

    Machine learning applied to predicting microorganism growth temperatures and enzyme catalytic optima.

    ACS Synth. Biol. 2019; 8: 1411-1420

    • Bradford E.
    • et al.

    Dynamic modeling and optimization of sustainable algal production with uncertainty using multivariate Gaussian processes.

    Comput. Chem. Eng. 2018; 118: 143-158

    • Vega-Ramon F.
    • et al.

    Kinetic and hybrid modeling for yeast astaxanthin production under uncertainty.

    Biotechnol. Bioeng. 2021; 118: 4854-4866

    • Freier L.
    • et al.

    Framework for Kriging-based iterative experimental analysis and design: optimization of secretory protein production in Corynebacterium glutamicum.

    Eng. Life Sci. 2016; 16: 538-549

    • Zheng Z.Y.
    • et al.

    Artificial neural network – genetic algorithm to optimize wheat germ fermentation condition: application to the production of two anti-tumor benzoquinones.

    Food Chem. 2017; 227: 264-270

    • del Rio-Chanona E.A.
    • et al.

    Dynamic modeling and optimization of cyanobacterial C-phycocyanin production process by artificial neural network.

    Algal Res. 2016; 13: 7-15

    • Pappu S.M.J.
    • Gummadi S.N.

    Artificial neural network and regression coupled genetic algorithm to optimize parameters for enhanced xylitol production by Debaryomyces nepalensis in bioreactor.

    Biochem. Eng. J. 2017; 120: 136-145

    • Ebrahimpour A.
    • et al.

    A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM.

    BMC Biotechnol. 2008; 8: 96

    • Sebayang A.H.
    • et al.

    Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony.

    Ind. Crop. Prod. 2017; 97: 146-155

    • Rodriguez-Granrose D.
    • et al.

    Design of experiment (DOE) applied to artificial neural network architecture enables rapid bioprocess improvement.

    Bioprocess Biosyst. Eng. 2021; 44: 1301-1308

    • Rogers A.W.
    • et al.

    A transfer learning approach for predictive modeling of bioprocesses using small data.

    Biotechnol. Bioeng. 2022; 119: 411-422

    • Hutter C.
    • et al.

    Knowledge transfer across cell lines using hybrid Gaussian process models with entity embedding vectors.

    Biotechnol. Bioeng. 2021; 118: 4389-4401

    • Wang Y.
    • et al.

    A comparison of word embeddings for the biomedical natural language processing.

    J. Biomed. Inform. 2018; 87: 12-20

    • Bluma A.
    • et al.

    In-situ imaging sensors for bioprocess monitoring: state of the art.

    Anal. Bioanal. Chem. 2010; 398: 2429-2438

    • Marba-Ardebol A.M.
    • et al.

    In situ microscopy for real-time determination of single-cell morphology in bioprocesses.

    J. Vis. Exp. 2019; ()

    • Grunberger A.
    • et al.

    Single-cell microfluidics: opportunity for bioprocess development.

    Curr. Opin. Biotechnol. 2014; 29: 15-23

    • Du G.
    • et al.

    Microfluidics for cell-based high throughput screening platforms – a review.

    Anal. Chim. Acta. 2016; 903: 36-50

    • Riordon J.
    • et al.

    Deep learning with microfluidics for biotechnology.

    Trends Biotechnol. 2019; 37: 310-324

    • Galan E.A.
    • et al.

    Intelligent microfluidics: the convergence of machine learning and microfluidics in materials science and biomedicine.

    Matter. 2020; 3: 1893-1922

    • Stallmann D.
    • et al.

    Towards an automatic analysis of CHO-K1 suspension growth in microfluidic single-cell cultivation.

    Bioinformatics. 2021; 37: 3632-3639

    • O’Connor O.M.
    • et al.

    DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics.

    PLoS Comput. Biol. 2022; 18e1009797

    • Lashkaripour A.
    • et al.

    Machine learning enables design automation of microfluidic flow-focusing droplet generation.

    Nat. Commun. 2021; 12: 25

    • Hartmann R.
    • et al.

    BiofilmQ, a software tool for quantiative image analysis of microbial biofilm communities.

    Nat. Microbiol. 2020; 6: 151-156

    • Long B.
    • et al.

    Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity.

    Nat. Commun. 2022; 13: 541

  • Calculation of light penetration depth in photobioreactors.

    Biotechnol. Bioprocess Eng. 1999; 4: 78-81

    • Wang J.
    • et al.

    The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae.

    Biotechnol. Biofuels. 2015; 8: 49

    • Göttl Q.
    • et al.

    Automated flowsheet synthesis using hierarchical reinforcement learning: proof of concept.

    Chem. Ing. Tech. 2021; 93: 2010-2018

    • Stops L.
    • et al.

    Flowsheet synthesis through hierarchical reinforcement learning and graph neural networks.

    arXiv. 2022; ()

  • Scale-up of microbial processes: impacts, tools and open questions.

    J. Biotechnol. 2012; 160: 3-9

    • Neubauer P.
    • Junne S.

    Scale-up and scale-down methodologies for bioreactors.

    in: Mandenius C.-F. Bioreactors. Wiley-VCH Verlag, 2016: 323-354

    • Delvigne F.
    • et al.

    Bioprocess scale-up/down as integrative enabling technology: from fluid mechanics to systems biology and beyond.

    Microb. Biotechnol. 2017; 10: 1267-1274

    • Wang G.
    • et al.

    Comparative performance of different scale-down simulators of substrate gradients in Penicillium chrysogenum cultures: the need of a biological systems response analysis.

    Microb. Biotechnol. 2018; 11: 486-497

    • Karimi Alavijeh M.
    • et al.

    Digitally enabled approaches for the scale up of mammalian cell bioreactors.

    Chem. Eng. Technol. 2022; 4100040

    • Le H.
    • et al.

    Multivariate analysis of cell culture bioprocess data–lactate consumption as process indicator.

    J. Biotechnol. 2012; 162: 210-223

    • Facco P.
    • et al.

    Using data analytics to accelerate biopharmaceutical process scale-up.

    Biochem. Eng. J. 2020; 164107791

    • Smiatek J.
    • et al.

    Generic and specific recurrent neural network models: applications for large and small scale biopharmaceutical upstream processes.

    Biotechnol. Rep. (Amst.). 2021; 31e00640

    • Sokolov M.
    • et al.

    Sequential multivariate cell culture modeling at multiple scales supports systematic shaping of a monoclonal antibody toward a quality target.

    Biotechnol. J. 2018; 13e1700461

    • Bayer B.
    • et al.

    Model transferability and reduced experimental burden in cell culture process development facilitated by hybrid modeling and intensified design of experiments.

    Front. Bioeng. Biotechnol. 2021; 9740215

    • Cai S.
    • et al.

    Physics-informed neural networks (PINNs) for fluid mechanics: a review.

    Acta Mech. Sinica. 2022; 37: 1727-1738

    • Mowbray M.
    • et al.

    Industrial data science – a review of machine learning applications for chemical and process industries.

    React. Chem. Eng. 2022; 7: 1471-1509

    • Luttmann R.
    • et al.

    Soft sensors in bioprocessing: a status report and recommendations.

    Biotechnol. J. 2012; 7: 1040-1048

    • Gerzon G.
    • et al.

    Process analytical technologies – advances in bioprocess integration and future perspectives.

    J. Pharm. Biomed. Anal. 2022; 207114379

    • Narayanan H.
    • et al.

    Bioprocessing in the digital age: the role of process models.

    Biotechnol. J. 2020; 15e1900172

    • Kadlec P.
    • et al.

    Data-driven soft sensors in the process industry.

    Comput. Chem. Eng. 2009; 33: 795-814

    • Desai K.
    • et al.

    Soft-sensor development for fed-batch bioreactors using support vector regression.

    Biochem. Eng. J. 2006; 27: 225-239

  • Fortuna L. Soft Sensors for Monitoring and Control of Industrial Processes. Springer, 2007
    • Randek J.
    • Mandenius C.F.

    On-line soft sensing in upstream bioprocessing.

    Crit. Rev. Biotechnol. 2018; 38: 106-121

    • Zhu X.
    • et al.

    Modern soft-sensing modeling methods for fermentation processes.

    Sensors (Basel). 2020; 20: 1771

    • Schmidt A.
    • et al.

    Process analytical technology as key-enabler for digital twins in continuous biomanufacturing.

    J. Chem. Technol. Biotechnol. 2022; 97: 2336-2346

    • Chen Y.
    • et al.

    Digital twins in pharmaceutical and biopharmaceutical manufacturing: a literature review.

    Processes. 2020; 8: 1088

    • Hartmann F.S.F.
    • et al.

    Digital models in biotechnology: towards multi-scale integration and implementation.

    Biotechnol. Adv. 2022; 60108015

    • Portela R.M.C.
    • et al.

    When is an in silico representation a digital twin? A biopharmaceutical industry approach to the digital twin concept.

    Adv. Biochem. Eng. Biotechnol. 2021; 176: 35-55

    • Zobel-Roos S.
    • et al.

    Digital Twins in Biomanufacturing.

    Adv. Biochem. Eng. Biotechnol. 2021; 176: 181-262

    • Sun Q.
    • Ge Z.

    A survey on deep learning for data-driven soft sensors.

    IEEE Trans. Industr. Inform. 2021; 17: 5853-5866

    • Dai X.
    • et al.

    “Assumed inherent sensor” inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process.

    Comput. Chem. Eng. 2006; 30: 1203-1225

    • Albiol J.
    • et al.

    Biomass estimation in plant cell cultures: a neural network approach.

    Biotechnol. Prog. 1995; 11: 88-92

    • Wang B.
    • et al.

    Soft-sensor modeling for L-lysine fermentation process based on hybrid ICS-MLSSVM.

    Sci. Rep. 2020; 10: 11630

    • Graziani S.
    • Xibilia M.G.

    Deep learning for soft sensor design.

    in: Pedrycz W. Chen S.-M. Development and Analysis of Deep Learning Architectures. Springer, 2020: 31-59

    • Gopakumar V.
    • et al.

    A deep learning based data driven soft sensor for bioprocesses.

    Biochem. Eng. J. 2018; 136: 28-39

    • Yao L.
    • Ge Z.

    Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application.

    IEEE Trans. Ind. Electron. 2018; 65: 1490-1498

    • Mowbray M.
    • et al.

    Probabilistic machine learning based soft-sensors for product quality prediction in batch processes.

    Chemom. Intell. Lab. Syst. 2022; 228104616

    • Curreri F.
    • et al.

    Soft sensor transferability: a survey.

    Appl. Sci. 2021; 11: 7710

    • Kadlec P.
    • et al.

    Review of adaptation mechanisms for data-driven soft sensors.

    Comput. Chem. Eng. 2011; 35: 1-24

    • Li W.
    • et al.

    Transfer learning for process fault diagnosis: knowledge transfer from simulation to physical processes.

    Comput. Chem. Eng. 2020; 139106904

    • Camacho E.F.
    • Alba C.B.

    Model Predictive Control.

    Springer, 2013

    • Hewing L.
    • et al.

    Learning-based model predictive control: toward safe learning in control.

    Annu. Rev. Control Robot. Auton. Syst. 2020; 3: 269-296

    • Chee E.
    • et al.

    An integrated approach for machine-learning-based system identification of dynamical systems under control: application towards the model predictive control of a highly nonlinear reactor system.

    Front. Chem. Sci. Eng. 2021; 16: 237-250

  • Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks.

    Chem. Eng. J. 2007; 127: 95-109

    • Masampally V.S.
    • et al.

    Cascade Gaussian Process Regression Framework for Biomass Prediction in a Fed-batch Reactor.

    in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI). 2018

    • Zan T.
    • et al.

    Statistical process control with intelligence based on the deep learning model.

    Appl. Sci. 2019; 10: 308

    • Petsagkourakis P.
    • et al.

    Reinforcement learning for batch bioprocess optimization.

    Comput. Chem. Eng. 2020; 133106649

    • Xie H.
    • et al.

    Model Predictive Control Guided Reinforcement Learning Control Scheme.

    in: 2020 International Joint Conference on Neural Networks (IJCNN). 2020

    • Hedrick E.
    • et al.

    Reinforcement learning for online adaptation of model predictive controllers: application to a selective catalytic reduction unit.

    Comput. Chem. Eng. 2022; 160107727

    • Treloar N.J.
    • et al.

    Deep reinforcement learning for the control of microbial co-cultures in bioreactors.

    PLoS Comput. Biol. 2020; 16e1007783

    • Oh T.H.
    • et al.

    Integration of reinforcement learning and model predictive control to optimize semi-batch bioreactor.

    AIChE J. 2022; 68: 6

    • Rehnert M.
    • Takors R.

    FAIR research data management as community approach in bioengineering.

    Eng. Life Sci. 2022; ()

    • Wilkinson M.D.
    • et al.

    The FAIR guiding principles for scientific data management and stewardship.

    Sci. Data. 2016; 3160018

    • Farid S.S.
    • et al.

    Benchmarking biopharmaceutical process development and manufacturing cost contributions to R&D.

    MAbs. 2020; 12: 1754999

    • Faulon J.L.
    • Faure L.

    In silico, in vitro, and in vivo machine learning in synthetic biology and metabolic engineering.

    Curr. Opin. Chem. Biol. 2021; 65: 85-92

    • O’Brien C.M.
    • et al.

    A hybrid mechanistic-empirical model for in silico mammalian cell bioprocess simulation.

    Metab. Eng. 2021; 66: 31-40

    • Udaondo Z.

    Big data and computational advancements for next generation of microbial biotechnology.

    Microb. Biotechnol. 2022; 15: 107-109

    • Giovani B.

    Open data for research and strategic monitoring in the pharmaceutical and biotech industry.

    Data Sci. J. 2017; 16: 18

    • Gitter D.M.

    Resolving the open source paradox in biotechnology: a proposal for a revised open source policy for publicly funded genomic databases.

    Comput. Law Secur. Rev. 2008; 24: 529-539

    • Sayers E.W.
    • et al.

    Database resources of the national center for biotechnology information.

    Nucleic Acids Res. 2022; 50: D20-D26

    • Oliveira A.L.

    Biotechnology, big data and artificial intelligence.

    Biotechnol. J. 2019; 14e1800613

    • Harrow J.
    • et al.

    ELIXIR-EXCELERATE: establishing Europe’s data infrastructure for the life science research of the future.

    EMBO J. 2021; 40e107409

    • Kok J.N.
    • Unesco

    Artificial Intelligence.

    Eolss Publishers Company, 2009

    • Alpaydin E.

    Introduction to Machine Learning.

    4th edn. MIT Press, 2020

    • Buchanan B.G.
    • Smith R.G.

    Fundamentals of expert systems.

    Annu. Rev. Comput. Sci. 1988; 3: 23-58

    • Cunningham P.
    • et al.

    Supervised learning.

    in: Cord M. Cunningham P. Machine Learning Techniques for Multimedia: Case Studies on Organization and Retrieval. Springer, 2008: 21-49

    • Ghahramani Z.

    Unsupervised learning.

    in: Bousquet O. Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2 – 14, 2003, Tübingen, Germany, August 4 – 16, 2003, Revised Lectures. Springer, 2004: 72-112

    • Kaelbling L.P.
    • et al.

    Reinforcement learning: a survey.

    J. Artif. Intell. Res. 1996; 4: 237-285

    • Sutton R.S.

    Introduction: the challenge of reinforcement learning.

    in: Sutton R.S. Reinforcement Learning. Springer, 1992: 1-3

    • Weiss K.
    • et al.

    A survey of transfer learning.

    J. Big Data. 2016; 3: 9

    • Hua J.
    • et al.

    Learning for a robot: deep reinforcement learning, imitation learning, transfer learning.

    Sensors (Basel). 2021; 21: 1278

    • Mahmud M.
    • et al.

    Applications of deep learning and reinforcement learning to biological data.

    IEEE Trans. Neural Netw. Learn. Syst. 2018; 29: 2063-2079

    • Voulodimos A.
    • et al.

    Deep learning for computer vision: a brief review.

    Comput. Intell. Neurosci. 2018; 2018: 7068349

    • Ching T.
    • et al.

    Opportunities and obstacles for deep learning in biology and medicine.

    J. R. Soc. Interface. 2018; 15: 20170387

    • Bennett D.
    • et al.

    Value-free reinforcement learning: policy optimization as a minimal model of operant behavior.

    Curr. Opin. Behav. Sci. 2021; 41: 114-121

    • Zhou Z.-H.

    Ensemble learning.

    in: Mach Learn. Springer, 2021: 181-210

    • Lawson C.E.
    • et al.

    Machine learning for metabolic engineering: a review.

    Metab. Eng. 2021; 63: 34-60

    • Greener J.G.
    • et al.

    A guide to machine learning for biologists.

    Nat. Rev. Mol. Cell Biol. 2022; 23: 40-55

    • Wang S.-C.

    Artificial neural network.

    in: Interdisciplinary Computing in Java Programming. Springer, 2003: 81-100

    • Dhruv P.
    • Naskar S.

    Image Classification Using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN): A Review.

    Springer, 2020

    • Gu J.
    • et al.

    Recent advances in convolutional neural networks.

    Pattern Recogn. 2018; 77: 354-377

    • Izmailov P.
    • et al.

    What are Bayesian neural network posteriors really like?.

    in: Marina M. Tong Z. Proceedings of the 38th International Conference on Machine Learning. ICML, 2021

    • Goodfellow I.
    • et al.

    Deep Learning.

    MIT Press, 2016

    • Connor M.
    • et al.

    Variational autoencoder with learned latent structure.

    in: Arindam B. Kenji F. Proceedings of The 24th International Conference on Artificial Intelligence and Statistics. AAAI Press, 2021

    • Basu S.
    • et al.

    Iterative random forests to discover predictive and stable high-order interactions.

    Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 1943-1948

    • Noble W.S.

    What is a support vector machine?.

    Nat. Biotechnol. 2006; 24: 1565-1567

  • Biological applications of support vector machines.

    Brief. Bioinform. 2004; 5: 328-338

    • di Sciascio F.
    • Amicarelli A.N.

    Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression.

    Comput. Chem. Eng. 2008; 32: 3264-3273

    • Lan L.
    • et al.

    Generative adversarial networks and its applications in biomedical informatics.

    Front. Public Health. 2020; 8: 164

    • Jiao Q.
    • Zhang S.

    A brief survey of word embedding and its recent development.

    in: 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference. IAEAC, 2021

    • Bengio S.
    • et al.

    Group Sparse Coding.

    in: Bengio Y. Advances in Neural Information Processing Systems. 22. Curran Associates, Inc., 2009: 82-89

    • Watkins C.J.C.H.
    • Dayan P.

    Q-learning.

    Mach. Learn. 1992; 8: 279-292

    • Schwenzer M.
    • et al.

    Review on model predictive control: an engineering perspective.

    Int. J. Adv. Manuf. Technol. 2021; 117: 1327-1349

    • Altman R.B.
    • et al.

    Text mining for biology–the way forward: opinions from leading scientists.

    Genome Biol. 2008; 9: S7

    • Jensen L.J.
    • et al.

    Literature mining for the biologist: from information retrieval to biological discovery.

    Nat. Rev. Genet. 2006; 7: 119-129

    • Pinto J.
    • et al.

    A general deep hybrid model for bioreactor systems: combining first principles with deep neural networks.

    Comput. Chem. Eng. 2022; 165107952

    • Nelofer R.
    • et al.

    Comparison of the estimation capabilities of response surface methodology and artificial neural network for the optimization of recombinant lipase production by E. coli BL21.

    J. Ind. Microbiol. Biotechnol. 2012; 39: 243-254

    • Wang Y.
    • et al.

    Optimization of dark fermentation for biohydrogen production using a hybrid artificial neural network (ANN) and response surface methodology (RSM) approach.

    Environ. Prog. Sustain. Energy. 2020; 40: 2

    • Unni S.
    • et al.

    Artificial neural network-genetic algorithm (ANN-GA) based medium optimization for the production of human interferon gamma (hIFN-γ) in Kluyveromyces lactis cell factory.

    Can. J. Chem. Eng. 2019; 97: 843-858

    • Tavasoli T.
    • et al.

    A robust feeding control strategy adjusted and optimized by a neural network for enhancing of alpha 1-antitrypsin production in Pichia pastoris.

    Biochem. Eng. J. 2019; 144: 18-27

    • Zhang L.
    • et al.

    Modeling and optimization of microbial lipid fermentation from cellulosic ethanol wastewater by Rhodotorula glutinis based on the support vector machine.

    Bioresour. Technol. 2020; 301122781

    • Dong C.
    • Chen J.

    Optimization of process parameters for anaerobic fermentation of corn stalk based on least squares support vector machine.

    Bioresour. Technol. 2019; 271: 174-181

    • Kennedy M.J.
    • Spooner N.R.

    Using fuzzy logic to design fermentation media: a comparison to neural networks and factorial design.

    Biotechnol. Tech. 1996; 10: 47-52

    • Brunner M.
    • et al.

    Investigation of the interactions of critical scale-up parameters (pH, pO2 and pCO2) on CHO batch performance and critical quality attributes.

    Bioprocess Biosyst. Eng. 2017; 40: 251-263

    • Holubar P.

    Advanced controlling of anaerobic digestion by means of hierarchical neural networks.

    Water Res. 2002; 36: 2582-2588

    • Glassey J.
    • et al.

    Enhanced supervision of recombinant E. coli fermentation via artificial neural networks.

    Process Biochem. 1994; 29: 387-398

    • Shokry A.
    • et al.

    Data-driven soft-sensors for online monitoring of batch processes with different initial conditions.

    Comput. Chem. Eng. 2018; 118: 159-179

    • Wong W.
    • et al.

    Recurrent neural network-based model predictive control for continuous pharmaceutical manufacturing.

    Math. 2018; 6: 6110242

    • Barberi G.
    • et al.

    Anticipated cell lines selection in bioprocess scale-up through machine learning on metabolomics dynamics.

    IFAC-PapersOnLine. 2021; 54: 85-90

    • Poth M.
    • et al.

    Extensive evaluation of machine learning models and data preprocessings for Raman modeling in bioprocessing.

    J. Raman Spectrosc. 2022; 53: 1580-1591

    • Hassan S.
    • et al.

    Bioprocess data mining using regularized regression and random forests.

    BMC Syst. Biol. 2013; 7: S5

    • Shrivastava R.
    • et al.

    Application and evaluation of random forest classifier technique for fault detection in bioreactor operation.

    Chem. Eng. Commun. 2017; 204: 591-598

    • Probst D.
    • et al.

    Biocatalysed synthesis planning using data-driven learning.

    Nat. Commun. 2022; 13: 964

    • Kotidis P.
    • Kontoravdi C.

    Harnessing the potential of artificial neural networks for predicting protein glycosylation.

    Metab. Eng. Commun. 2020; 10e00131

    • Nikita S.
    • et al.

    Reinforcement learning based optimization of process chromatography for continuous processing of biopharmaceuticals.

    Chem. Eng. Sci. 2021; 230116171

    • Pan E.
    • et al.

    Constrained Q-learning for batch process optimization.

    IFAC-PapersOnLine. 2021; 54: 492-497

    • Heidari Baladehi M.
    • et al.

    Culture-free identification and metabolic profiling of microalgal single cells via ensemble learning of ramanomes.

    Anal. Chem. 2021; 93: 8872-8880

    • Czajka J.J.
    • et al.

    Integrated knowledge mining, genome-scale modeling, and machine learning for predicting Yarrowia lipolytica bioproduction.

    Metab. Eng. 2021; 67: 227-236

    • Mowbray M.
    • et al.

    Ensemble learning for bioprocess dynamic modelling and prediction.

    Biotech. Bioeng. 2022; ()

    • Liu Y.
    • Gunawan R.

    Bioprocess optimization under uncertainty using ensemble modeling.

    J. Biotechnol. 2017; 244: 34-44

    • Pinto J.
    • et al.

    A bootstrap-aggregated hybrid semi-parametric modeling framework for bioprocess development.

    Bioprocess Biosyst. Eng. 2019; 42: 1853-1865

    • Tokuyama K.
    • et al.

    Data science-based modeling of the lysine fermentation process.

    J. Biosci. Bioeng. 2020; 130: 409-415

    • Agarwal A.
    • et al.

    110th Anniversary: ensemble-based machine learning for industrial fermenter classification and foaming control.

    Ind. Eng. Chem. Res. 2019; 58: 16719-16729

    • Mante J.
    • et al.

    A heuristic approach to handling missing data in biologics manufacturing databases.

    Bioprocess Biosyst. Eng. 2019; 42: 657-663

    • Zhang T.
    • et al.

    Pattern recognition in chemical process flowsheets.

    AICHE J. 2019; 65: 592-603

    • Coşgun A.
    • et al.

    Analysis of lipid production from Yarrowia lipolytica for renewable fuel production by machine learning.

    Fuel. 2022; 315122817

    • Resendis-Antonio O.

    Constraint-based modeling.

    in: Dubitzky W. Encyclopedia of Systems Biology. Springer, 2013: 494-498

    • Kumar V.
    • et al.

    Design of experiments applications in bioprocessing: concepts and approach.

    Biotechnol. Prog. 2014; 30: 86-99

    • von Stosch M.
    • Willis M.J.

    Intensified design of experiments for upstream bioreactors.

    Eng. Life Sci. 2017; 17: 1173-1184

    • Garetti M.
    • et al.

    Life cycle simulation for the design of product–service systems.

    Comput. Ind. 2012; 63: 361-369

    • Chowdhary K.R.

    Natural language processing.

    in: Fundamentals of Artificial Intelligence. Springer, 2020: 603-649

    • Hirschberg J.
    • Manning C.D.

    Advances in natural language processing.

    Science. 2015; 349: 261-266

  • spot_img

    Latest Intelligence

    spot_img