Zephyrnet Logo

Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures

Date:

  • Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    Article  CAS  Google Scholar 

  • Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  Google Scholar 

  • Huang, X. et al. Hypoxia-tropic protein nanocages for modulation of tumor- and chemotherapy-associated hypoxia. ACS Nano 13, 236–247 (2019).

    Article  CAS  Google Scholar 

  • Dvorak, A. M. et al. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J. Leukoc. Biol. 59, 100–115 (1996).

    Article  CAS  Google Scholar 

  • Dvorak, A. M. & Feng, D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J. Histochem. Cytochem. 49, 419–432 (2001).

    Article  CAS  Google Scholar 

  • Claesson-Welsh, L. Vascular permeability—the essentials. Ups. J. Med Sci. 120, 135–143 (2015).

    Article  Google Scholar 

  • Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  Google Scholar 

  • Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  Google Scholar 

  • Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article  CAS  Google Scholar 

  • Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).

    Article  CAS  Google Scholar 

  • Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).

    Article  CAS  Google Scholar 

  • Wei, Y. et al. Prediction and design of nanozymes using explainable machine learning. Adv. Mater. 34, e2201736 (2022).

    Article  Google Scholar 

  • Lin, X. et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 11, 814–819 (2011).

    Article  CAS  Google Scholar 

  • Fan, K. et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 7, 459–464 (2012).

    Article  CAS  Google Scholar 

  • Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).

    Article  Google Scholar 

  • Caicedo, J. C. et al. Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 849–863 (2017).

    Article  CAS  Google Scholar 

  • Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019).

    Article  CAS  Google Scholar 

  • Todorov, M. I. et al. Machine learning analysis of whole mouse brain vasculature. Nat. Methods 17, 442–449 (2020).

    Article  CAS  Google Scholar 

  • Zhang, Y. et al. Biomimetic design of mitochondria-targeted hybrid nanozymes as superoxide scavengers. Adv. Mater. 33, e2006570 (2021).

    Article  Google Scholar 

  • Nagy, J. A., Chang, S. H., Shih, S. C., Dvorak, A. M. & Dvorak, H. F. Heterogeneity of the tumor vasculature. Semin Thromb. Hemost. 36, 321–331 (2010).

    Article  CAS  Google Scholar 

  • Feng, D., Nagy, J. A., Dvorak, A. M. & Dvorak, H. F. Different pathways of macromolecule extravasation from hyperpermeable tumor vessels. Microvasc. Res. 59, 24–37 (2000).

    Article  CAS  Google Scholar 

  • Bonam, S. R., Wang, F. & Muller, S. Lysosomes as a therapeutic target. Nat. Rev. Drug Discov. 18, 923–948 (2019).

    Article  CAS  Google Scholar 

  • Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article  CAS  Google Scholar 

  • Tai, W., Li, J., Corey, E. & Gao, X. A ribonucleoprotein octamer for targeted siRNA delivery. Nat. Biomed. Eng. 2, 326–337 (2018).

    Article  CAS  Google Scholar 

  • Bern, M. et al. An engineered human albumin enhances half-life and transmucosal delivery when fused to protein-based biologics. Sci. Transl. Med. 12, eabb0580 (2020).

    Article  CAS  Google Scholar 

  • Yokota, S. & Fahimi, H. D. Immunocytochemical localization of albumin in the secretory apparatus of rat liver parenchymal cells. Proc. Natl Acad. Sci. USA 78, 4970–4974 (1981).

    Article  CAS  Google Scholar 

  • Shroyer, K. R. & Nakane, P. K. Immunohistochemical localization of albumin and in situ hybridization of albumin mRNA. Cell Biochem. Funct. 5, 195–210 (1987).

    Article  CAS  Google Scholar 

  • Pelletier, L., Jokitalo, E. & Warren, G. The effect of Golgi depletion on exocytic transport. Nat. Cell Biol. 2, 840–846 (2000).

    Article  CAS  Google Scholar 

  • De Matteis, M. A. & Luini, A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 9, 273–284 (2008).

    Article  Google Scholar 

  • Jiang, B. et al. A natural drug entry channel in the ferritin nanocage. Nano Today 35, 100948 (2020).

    Article  CAS  Google Scholar 

  • Huang, X. et al. Protein nanocages that penetrate airway mucus and tumor tissue. Proc. Natl Acad. Sci. USA 114, E6595–E6602 (2017).

    Article  CAS  Google Scholar 

  • Liu, Q. et al. Modular assembly of tumor-penetrating and oligomeric nanozyme based on intrinsically self-assembling protein nanocages. Adv. Mater. 33, e2103128 (2021).

    Article  Google Scholar 

  • Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. Med. Image Comput. Comput. Assist. Interv. 9351, 234–241 (2015).

    Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img