Zephyrnet Logo

Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature

Date:

  • 1.

    Hosseini, S. E. & Wahid, M. A. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850–866 (2016).

    CAS  Article  Google Scholar 

  • 2.

    Schneemann, A. et al. Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 118, 10775–10839 (2018).

    CAS  Article  Google Scholar 

  • 3.

    He, T., Pachfule, P., Wu, H., Xu, Q. & Chen, P. Hydrogen carriers. Nat. Rev. Mater. 1, 16059 (2016).

  • 4.

    Züttel, A. Materials for hydrogen storage. Mater. Today 6, 24–33 (2003).

    Article  Google Scholar 

  • 5.

    Orimo, S.-i, Nakamori, Y., Eliseo, J. R., Züttel, A. & Jensen, C. M. Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111–4132 (2007).

    CAS  Article  Google Scholar 

  • 6.

    Rowsell, J. L. & Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006).

    CAS  Article  Google Scholar 

  • 7.

    Vajo, J. J., Skeith, S. L. & Mertens, F. Reversible storage of hydrogen in destabilized LiBH4. J. Phys. Chem. B 109, 3719–3722 (2005).

    CAS  Article  Google Scholar 

  • 8.

    Sakintuna, B., Lamaridarkrim, F. & Hirscher, M. Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32, 1121–1140 (2007).

    CAS  Article  Google Scholar 

  • 9.

    Jena, P. Materials for hydrogen storage: past, present, and future. J. Phys. Chem. Lett. 2, 206–211 (2011).

    CAS  Article  Google Scholar 

  • 10.

    Łodziana, Z., Dębski, A., Cios, G. & Budziak, A. Ternary LaNi4.75M0.25 hydrogen storage alloys: surface segregation, hydrogen sorption and thermodynamic stability. Int. J. Hydrogen Energy 44, 1760–1773 (2019).

    Article  CAS  Google Scholar 

  • 11.

    Zhong, C. et al. Microstructures and electrochemical properties of LaNi3.8–xMnx hydrogen storage alloys. Electrochim. Acta 58, 668–673 (2011).

    CAS  Article  Google Scholar 

  • 12.

    Shao, H., Xin, G., Zheng, J., Li, X. & Akiba, E. Nanotechnology in Mg-based materials for hydrogen storage. Nano Energy 1, 590–601 (2012).

    CAS  Article  Google Scholar 

  • 13.

    Lototskyy, M. V., Yartys, V. A., Pollet, B. G. & Bowman, R. C. Metal hydride hydrogen compressors: a review. Int. J. Hydrogen Energy 39, 5818–5851 (2014).

    CAS  Article  Google Scholar 

  • 14.

    Gao, M. et al. Ca(BH4)2–LiBH4–MgH2: a novel ternary hydrogen storage system with superior long-term cycling performance. J. Mater. Chem. A 1, 12285–12292 (2013).

    CAS  Article  Google Scholar 

  • 15.

    Chen, P., Xiong, Z., Luo, J., Lin, J. & Tan, K. L. Interaction of hydrogen with metal nitrides and imides. Nature 420, 302–304 (2002).

    CAS  Article  Google Scholar 

  • 16.

    Zhang, J. et al. Metal hydride nanoparticles with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement. Adv. Mater. 29, 1700760 (2017).

    Article  CAS  Google Scholar 

  • 17.

    Kubas, G. J. Molecular hydrogen complexes: coordination of a σ bond to transition metals. Acc. Chem. Res. 21, 120–128 (1988).

    Article  Google Scholar 

  • 18.

    Morris, L. et al. A manganese hydride molecular sieve for practical hydrogen storage under ambient conditions. Energy Environ. Sci. 12, 1580–1591 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles (The United States Department of Energy, 2017).https://www.energy.gov/eere/fuelcells/downloads/target-explanation-document-onboard-hydrogen-storage-light-duty-fuel-cell

  • 20.

    Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    CAS  Article  Google Scholar 

  • 21.

    Hart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019).

    CAS  Article  Google Scholar 

  • 22.

    Zhang, C. J. et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017).

    CAS  Article  Google Scholar 

  • 23.

    Hu, M. et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano 12, 3578–3586 (2018).

    CAS  Article  Google Scholar 

  • 24.

    Yang, L. et al. Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures. Nat. Commun. 8, 16049 (2017).

    CAS  Article  Google Scholar 

  • 25.

    Patchkovskii, S. et al. Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl Acad. Sci. USA 102, 10439–10444 (2005).

    CAS  Article  Google Scholar 

  • 26.

    Ming, M. et al. Promoted effect of alkalization on the catalytic performance of Rh/alk-Ti3C2X2 (X = O, F) for the hydrodechlorination of chlorophenols in base-free aqueous medium. Appl. Catal. B 210, 462–469 (2017).

    CAS  Article  Google Scholar 

  • 27.

    Ahmed, B., Anjum, D. H., Hedhili, M. N., Gogotsi, Y. & Alshareef, H. N. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 8, 7580–7587 (2016).

    CAS  Article  Google Scholar 

  • 28.

    Morris, L., Trudeau, M. L., Reed, D., Book, D. & Antonelli, D. M. Thermodynamically neutral Kubas-type hydrogen storage using amorphous Cr(iii) alkyl hydride gels. Phys. Chem. Chem. Phys. 17, 9480–9487 (2015).

    CAS  Article  Google Scholar 

  • 29.

    Ali, W. et al. Effects of Cu and Y substitution on hydrogen storage performance of TiFe0.86Mn0.1Y0.1–xCux. Int. J. Hydrogen Energy 42, 16620–16631 (2017).

    CAS  Article  Google Scholar 

  • 30.

    Srivastava, S. & Upadhyaya, R. K. Investigations of AB5-type hydrogen storage materials with enhanced hydrogen storage capacity. Int. J. Hydrogen Energy 36, 7114–7121 (2011).

    CAS  Article  Google Scholar 

  • 31.

    Ding, L. et al. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018).

    Article  CAS  Google Scholar 

  • 32.

    Broom, D. P. & Hirscher, M. Irreproducibility in hydrogen storage material research. Energy Environ. Sci. 9, 3368–3380 (2016).

    CAS  Article  Google Scholar 

  • 33.

    Lai, S. et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O). Nanoscale 7, 19390–19396 (2015).

    CAS  Article  Google Scholar 

  • 34.

    Han, F. et al. Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS Appl. Mater. Interfaces 11, 8443–8452 (2019).

    CAS  Article  Google Scholar 

  • 35.

    Piñero, J. J. et al. Diversity of adsorbed hydrogen on the TiC(001) surface at high coverages. J. Phys. Chem. C 122, 28013–28020 (2018).

    Article  CAS  Google Scholar 

  • 36.

    Hu, Q. et al. MXene: a new family of promising hydrogen storage medium. J. Phys. Chem. A 117, 14253–14260 (2013).

    CAS  Article  Google Scholar 

  • 37.

    Hu, Q. et al. Two-dimensional Sc2C: a reversible and high-capacity hydrogen storage material predicted by first-principles calculations. Int. J. Hydrogen Energy 39, 10606–10612 (2014).

    CAS  Article  Google Scholar 

  • 38.

    Osti, N. C. et al. Evidence of molecular hydrogen trapped in two-dimensional layered titanium carbide-based MXene. Phys. Rev. Mater. 1, 024004 (2017).

    Article  Google Scholar 

  • 39.

    Anderson, R. J. et al. NMR methods for characterizing the pore structures and hydrogen storage properties of microporous carbons. J. Am. Chem. Soc. 132, 8618–8626 (2010).

    CAS  Article  Google Scholar 

  • 40.

    Hope, M. A. et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18, 5099–5102 (2016).

    CAS  Article  Google Scholar 

  • 41.

    Wang, X., Andrews, L., Infante, I. & Gagliardi, L. Infrared spectra of the WH4(H2)4 complex in solid hydrogen. J. Am. Chem. Soc. 130, 1972–1978 (2008).

    CAS  Article  Google Scholar 

  • 42.

    Hoang, T. K. A., Morris, L., Sun, J., Trudeau, M. L. & Antonelli, D. M. Titanium hydrazide gels for Kubas-type hydrogen storage. J. Mater. Chem. A 1, 1947–1951 (2013).

    CAS  Article  Google Scholar 

  • 43.

    Hoang, T. K. A. & Antonelli, D. M. Exploiting the Kubas interaction in the design of hydrogen storage materials. Adv. Mater. 21, 1787–1800 (2009).

    CAS  Article  Google Scholar 

  • 44.

    Laptash, N. M., Maslennikova, I. G. & Kaidalova, T. A. Ammonium oxofluorotitanates. J. Fluorine Chem. 99, 133–137 (1999).

    CAS  Article  Google Scholar 

  • 45.

    Hancock, J. K. & Green, W. H. Vibrational deactivation of HF (v = 1) in pure HF and in HF-additive mixtures. J. Chem. Phys. 57, 4515–4529 (1972).

    CAS  Article  Google Scholar 

  • 46.

    Wei, T. Y., Lim, K. L., Tseng, Y. S. & Chan, S. L. I. A review on the characterization of hydrogen in hydrogen storage materials. Renew. Sustain. Energy Rev. 79, 1122–1133 (2017).

  • Source: https://www.nature.com/articles/s41565-020-00818-8

    spot_img

    Latest Intelligence

    spot_img