Zephyrnet Logo

Far-field coupling between moiré photonic lattices

Date:

  • Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article  CAS  Google Scholar 

  • Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article  CAS  Google Scholar 

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  CAS  Google Scholar 

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  Google Scholar 

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  CAS  Google Scholar 

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  CAS  Google Scholar 

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  CAS  Google Scholar 

  • Hu, G. W. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  CAS  Google Scholar 

  • Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

    Article  CAS  Google Scholar 

  • Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020).

    Article  CAS  Google Scholar 

  • Lubin, S. M., Zhou, W., Hryn, A. J., Huntington, M. D. & Odom, T. W. High-rotational symmetry lattices fabricated by moiré nanolithography. Nano Lett. 12, 4948–4952 (2012).

    Article  CAS  Google Scholar 

  • Wu, Z. L. & Zheng, Y. B. Moiré metamaterials and metasurfaces. Adv. Opt. Mater. 6, 1701057 (2018).

  • Mao, X. R., Shao, Z. K., Luan, H. Y., Wang, S. L. & Ma, R. M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).

    Article  CAS  Google Scholar 

  • Tang, H. N. et al. Modeling the optical properties of twisted bilayer photonic crystals. Light Sci. Appl. 10, 157 (2021).

  • Dong, K. C. et al. Flat bands in magic-angle bilayer photonic crystals at small twists. Phys. Rev. Lett. 126, 223601 (2021).

  • Lou, B. C. et al. Theory for twisted bilayer photonic crystal slabs. Phys. Rev. Lett. 126, 136101 (2021).

  • Hu, G., Krasnok, A., Mazor, Y., Qiu, C.-W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).

  • Adams, M. J. An Introduction to Optical Waveguides (John Wiley & Sons, 1981).

  • Hutter, E. & Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004).

    Article  CAS  Google Scholar 

  • Haes, A. J., Zou, S., Schatz, G. C. & Van Duyne, R. P. A nanoscale optical biosensor: the long-range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 108, 109–116 (2004).

    Article  CAS  Google Scholar 

  • Wu, Z. L. & Zheng, Y. B. Moiré chiral metamaterials. Adv. Opt. Mater. 5, 1700034 (2017).

  • Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nat. Photon. 7, 177–187 (2013).

    Article  CAS  Google Scholar 

  • Li, Z. P., Tian, X., Qiu, C. W. & Ho, J. S. Metasurfaces for bioelectronics and healthcare. Nat. Electron. 4, 382–391 (2021).

    Article  CAS  Google Scholar 

  • Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022).

  • Wen, J. M., Zhang, Y. & Xiao, M. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photon. 5, 83–130 (2013).

    Article  Google Scholar 

  • Hakala, T. K. et al. Lasing in dark and bright modes of a finite-sized plasmonic lattice. Nat. Commun. 8, 13687 (2017).

    Article  CAS  Google Scholar 

  • Rodriguez, S. R. K. et al. Coupling bright and dark plasmonic lattice resonances. Phys. Rev. X 1, 021019 (2011).

  • Heilmann, R., Salerno, G., Cuerda, J., Hakala, T. K. & Torma, P. Quasi-BIC mode lasing in a quadrumer plasmonic lattice. ACS Photon. 9, 224–232 (2022).

    Article  CAS  Google Scholar 

  • Guan, J. et al. Quantum dot-plasmon lasing with controlled polarization patterns. ACS Nano 14, 3426–3433 (2020).

    Article  CAS  Google Scholar 

  • Guan, J. et al. Engineering directionality in quantum dot shell lasing using plasmonic lattices. Nano Lett. 20, 1468–1474 (2020).

    Article  CAS  Google Scholar 

  • Watkins, N. E. et al. Surface normal lasing from CdSe nanoplatelets coupled to aluminum plasmonic nanoparticle lattices. J. Phys. Chem. C 125, 19874–19879 (2021).

    Article  CAS  Google Scholar 

  • Tan, M. J. et al. Lasing action from quasi‐propagating modes. Adv. Mater. 34, 2203999 (2022).

  • Winkler, J. M. et al. Dual-wavelength lasing in quantum-dot plasmonic lattice lasers. ACS Nano 14, 5223–5232 (2020).

    Article  CAS  Google Scholar 

  • Park, J.-E. et al. Polariton dynamics in two-dimensional Ruddlesden–Popper perovskites strongly coupled with plasmonic lattices. ACS Nano 16, 3917–3925 (2022).

    Article  CAS  Google Scholar 

  • Schokker, A. H. & Koenderink, A. F. Lasing at the band edges of plasmonic lattices. Phys. Rev. B 90, 155452 (2014).

    Article  Google Scholar 

  • Schokker, A. H., van Riggelen, F., Hadad, Y., Alù, A. & Koenderink, A. F. Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices. Phys. Rev. B 95, 085409 (2017).

    Article  Google Scholar 

  • Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Cengage Learning, 2011).

  • Schäfer, F. P. Dye Lasers (Springer Science & Business Media, 2013).

  • Wang, D. et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nat. Nanotechnol. 12, 889–894 (2017).

    Article  CAS  Google Scholar 

  • Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).

    Article  CAS  Google Scholar 

  • Guan, J. et al. Identification of Brillouin zones by in-plane lasing from light-cone surface lattice resonances. ACS Nano 15, 5567–5573 (2021).

    Article  CAS  Google Scholar 

  • Li, R. et al. Hierarchical hybridization in plasmonic honeycomb lattices. Nano Lett. 19, 6435–6441 (2019).

  • Juarez, X. G. et al. M-point lasing in hexagonal and honeycomb plasmonic lattices. ACS Photon. 9, 52–58 (2022).

    Article  CAS  Google Scholar 

  • Fernandez-Bravo, A. et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat. Mater. 18, 1172–1176 (2019).

    Article  CAS  Google Scholar 

  • Guan, J. et al. Plasmonic nanoparticle lattice devices for white-light lasing. Adv. Mater. 2103262 (2021).

  • Lin, Y. H. et al. Engineering symmetry-breaking nanocrescent arrays for nanolasing. Adv. Funct. Mater. 29, 1904157 (2019).

  • Deng, S. K. et al. Ultranarrow plasmon resonances from annealed nanoparticle lattices. Proc. Natl Acad. Sci. USA 117, 23380–23384 (2020).

    Article  CAS  Google Scholar 

  • Guo, R., Nečada, M., Hakala, T. K., Väkeväinen, A. I. & Törmä, P. Lasing at k-points of a honeycomb plasmonic lattice. Phys. Rev. Lett. 122, 013901 (2019).

  • Daskalakis, K. S., Vakevainen, A. I., Martikainen, J. P., Hakala, T. K. & Torma, P. Ultrafast pulse generation in an organic nanoparticle-array laser. Nano Lett. 18, 2658–2665 (2018).

    Article  CAS  Google Scholar 

  • Rekola, H. T., Hakala, T. K. & Torma, P. One-dimensional plasmonic nanoparticle chain lasers. ACS Photon. 5, 1822–1826 (2018).

    Article  CAS  Google Scholar 

  • Guan, J. et al. Light-matter interactions in hybrid material metasurfaces. Chem. Rev. 122, 15177–15203 (2022).

    Article  CAS  Google Scholar 

  • Henzie, J., Kwak, E. S. & Odom, T. W. Mesoscale metallic pyramids with nanoscale tips. Nano Lett. 5, 1199–1202 (2005).

    Article  CAS  Google Scholar 

  • Gao, H., Henzie, J. & Odom, T. W. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett. 6, 2104–2108 (2006).

    Article  CAS  Google Scholar 

  • Lee, M. H., Huntington, M. D., Zhou, W., Yang, J.-C. & Odom, T. W. Programmable soft lithography: solvent-assisted nanoscale embossing. Nano Lett. 11, 311–315 (2011).

    Article  CAS  Google Scholar 

  • Johnson, P. B. & Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img